1 |
Clément J C , Shrestha J , Ehrenfeld J G , et al. Ammonium oxidation coupled to dissimilatory reduction of iron under anaerobic conditions in wetland soils[J]. Soil Biology and Biochemistry, 2005, 37 (12): 2323- 2328.
doi: 10.1016/j.soilbio.2005.03.027
|
2 |
Sawayama S . Possibility of anoxic ferric ammonium oxidation[J]. Journal of Bioscience and Bioengineering, 2006, 101 (1): 70- 72.
doi: 10.1263/jbb.101.70
|
3 |
Melton E D , Stief P , Behrens S , et al. High spatial resolution of distribution and interconnections between Feand N-redox processes in profundal lake sediments[J]. Environmental Microbiology, 2014, 16 (10): 3287- 3303.
|
4 |
Li Xiaofei , Hou Lijun , Liu Min , et al. Evidence of nitrogen loss from anaerobic ammonium oxidation coupled with ferric iron reduction in an intertidal wetland[J]. Environmental Science & Technology, 2015, 49 (19): 11560- 11568.
URL
|
5 |
Ding Longjun , An Xinli , Li Shun , et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from paddy soils in a chronosequence[J]. Environmental Science & Technology, 2014, 48 (18): 10641- 10647.
URL
|
6 |
Cheng Lü , Li Xiaofei , Lin Xianbiao , et al. Dissimilatory nitrate reduction processes in sediments of urban river networks: Spatiotemporal variations and environmental implications[J]. Environmental Pollution, 2016, 219, 545- 554.
doi: 10.1016/j.envpol.2016.05.093
|
7 |
Shu Duntao , He Yanling , Yue Hong , et al. Metagenomic and quantitative insights into microbial communities and functional genes of nitrogen and iron cycling in twelve wastewater treatment systems[J]. Chemical Engineering Journal, 2016, 290, 21- 30.
doi: 10.1016/j.cej.2016.01.024
|
8 |
Park W , Nam Y K , Lee M J , et al. Anaerobic ammonia-oxidation coupled with Fe3+ reduction by an anaerobic culture from a piggery wastewater acclimated to NH4+/Fe3+ medium[J]. Biotechnology and Bioprocess Engineering, 2009, 14 (5): 680- 685.
doi: 10.1007/s12257-009-0026-y
|
9 |
Lovley D R, Holmes D E, Nevin K P. Dissimilatory Fe(Ⅲ) and Mn(Ⅳ) reduction[M]//Advances in Microbial Physiology. Amsterdam: Elsevier, 2004: 219-286.
|
10 |
Ding Bangjing , Li Zhengkui , Qin Yunbin . Nitrogen loss from anaerobic ammonium oxidation coupled to Iron(Ⅲ) reduction in a riparian zone[J]. Environmental Pollution, 2017, 231, 379- 386.
doi: 10.1016/j.envpol.2017.08.027
|
11 |
Li Hu , Su Jianqiang , Yang Xiaoru , et al. RNA stable isotope probing of potential feammox population in paddy soil[J]. Environmental Science & Technology, 2019, 53 (9): 4841- 4849.
URL
|
12 |
Yao Zongbao , Wang Fang , Wang Chunliu , et al. Anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a eutrophic lake[J]. Environmental Science and Pollution Research, 2019, 26 (15): 15084- 15094.
URL
|
13 |
Anderson C R , Cook G M . Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in new Zealand[J]. Current Microbiology, 2004, 48 (5): 341- 347.
doi: 10.1007/s00284-003-4205-3
|
14 |
Huang S , Jaffé P R . Characterization of incubation experiments and development of an enrichment culture capable of ammonium oxidation under iron-reducing conditions[J]. Biogeosciences, 2015, 12 (3): 769- 779.
doi: 10.5194/bg-12-769-2015
|
15 |
许伟, 胡佩, 李艳红, 等. 微生物铁呼吸机制研究进展[J]. 生态学杂志, 2008, 27 (6): 1037- 1042.
URL
|
16 |
Yang W H , Weber K A , Silver W L . Nitrogen loss from soil through anaerobic ammonium oxidation coupled to iron reduction[J]. Nature Geoscience, 2012, 5 (8): 538- 541.
doi: 10.1038/ngeo1530
|
17 |
李海晖, 陈琛, 吴胤, 等. 厌氧铁氨氧化在三类污水中对氨去除的探索[J]. 净水技术, 2017, 36 (9): 14- 22.
URL
|
18 |
Jaffe P R, Huang Shan. Methods and compositions for nitrogen removal using Feammox microorganisms: US, 10479712[P]. 2019-11-19.
|
19 |
吴胤. 基于厌氧铁氨氧化反应的生物反应器工艺研究[D]. 广州: 华南农业大学, 2017.
|
20 |
Ding Bangjing , Chen Zhihao , Li Zhengkui , et al. Nitrogen loss through anaerobic ammonium oxidation coupled to iron reduction from ecosystem habitats in the Taihu estuary region[J]. Science of the Total Environment, 2019, 662, 600- 606.
URL
|
21 |
Huang Shan , Chen Chen , Peng Xiaochun , et al. Environmental factors affecting the presence of Acidimicrobiaceae and ammonium removal under iron-reducing conditions in soil environments[J]. Soil Biology and Biochemistry, 2016, 98, 148- 158.
URL
|
22 |
Yang Yafei , Zhang Yaobin , Li Yue , et al. Nitrogen removal during anaerobic digestion of wasted activated sludge under supplementing Fe(Ⅲ) compounds[J]. Chemical Engineering Journal, 2018, 332, 711- 716.
URL
|
23 |
Feng Li , Li Jin , Ma Haoran , et al. Effect of Fe(Ⅱ) on simultaneous marine anammox and Feammox treating nitrogen-laden saline wastewater under low temperature: Enhanced performance and kinetics[J]. Desalination, 2020, 478, 114287.
|
24 |
吴胤, 陈琛, 毛小云, 等. 基于Feammox的生物膜反应器性能研究[J]. 中国环境科学, 2017, 37 (9): 3353- 3362.
URL
|
25 |
Ruiz-Urigüen M , Steingart D , Jaffé P R . Oxidation of ammonium by Feammox Acidimicrobiaceae sp. A6 in anaerobic microbial electrolysis cells[J]. Environmental Science: Water Research & Technology, 2019, 5 (9): 1582- 1592.
URL
|
26 |
杨朋兵. Feammox反应机理及功能微生物[D]. 苏州: 苏州科技大学, 2016.
|
27 |
姚海楠, 张立秋, 李淑更, 等. 厌氧铁氨氧化处理模拟垃圾渗滤液的影响因素研究[J]. 环境科学学报, 2019, 39 (9): 2953- 2963.
URL
|
28 |
陈方敏, 金润, 袁砚, 等. 温度和pH对铁盐型氨氧化过程氮素转化的影响[J]. 环境科学, 2018, 39 (9): 4289- 4293.
URL
|
29 |
Li Xiang , Huang Yong , Liu Hengwei , et al. Simultaneous Fe(Ⅲ) reduction and ammonia oxidation process in Anammox sludge[J]. Journal of Environmental Sciences, 2018, 64, 42- 50.
|
30 |
王亚娥, 冯娟娟, 李杰, 等. 不同Fe(Ⅲ)对活性污泥异化铁还原耦合脱氮的影响及机理初探[J]. 环境科学学报, 2014, 34 (2): 377- 384.
URL
|
31 |
Zhou Guowei , Yang Xiaoru , Li Hu , et al. Electron shuttles enhance anaerobic ammonium oxidation coupled to iron(Ⅲ) reduction[J]. Environmental Science & Technology, 2016, 50 (17): 9298- 9307.
URL
|
32 |
Yang Yafei , Peng Hong , Niu Junfeng , et al. Promoting nitrogen removal during Fe(Ⅲ) reduction coupled to anaerobic ammonium oxidation(Feammox) by adding anthraquinone-2, 6-disulfonate (AQDS)[J]. Environmental Pollution, 2019, 247, 973- 979.
URL
|