1 |
Sirés I , Brillas E , Oturan M A , et al. Electrochemical advanced oxidation processes:today and Tomorrow. A review[J]. Environmental Science and Pollution Research, 2014, 21 (14): 8336- 8367.
doi: 10.1007/s11356-014-2783-1
URL
|
2 |
Nidheesh P V . ChemInform abstract:heterogeneous fenton catalysts for the abatement of organic pollutants from aqueous solution:A review[J]. ChemInform, 2015, 46 (28): 40552- 40577.
doi: 10.1002/chin.201528322
|
3 |
Marcano D C , Kosynkin D V , Berlin J M , et al. Improved synthesis of graphene oxide[J]. Acs Nano, 2010, 4 (8): 4806- 4814.
doi: 10.1021/nn1006368
|
4 |
滕厚开, 聂荣健, 谢陈鑫, 等. 石墨烯修饰石墨电极制备及在高氨氮废水中的应用[J]. 工业水处理, 2018, 38 (12): 42- 46.
doi: 10.11894/1005-829x.2018.38(12).042
URL
|
5 |
Allen A O , Hochanadel C J , Ghormley J A , et al. Decomposition of water and aqueous solutions under mixed fast neutron and γ-radiation[J]. The Journal of Physical Chemistry, 1952, 56 (5): 575- 586.
doi: 10.1021/j150497a007
|
6 |
Chen W , Li X W , Xue G , et al. Magnetic and conducting particles:preparation of polypyrrole layer on Fe3O4 nanospheres[J]. Applied Surface Science, 2003, 218 (1/2/3/4): 216- 222.
doi: 10.1016/s0169-4332(03)00590-7
|
7 |
Sohn B H , Cohen R E , Papaefthymiou G C . Magnetic properties of iron oxide nanoclusters within microdomains of block copolymers[J]. Journal of Magnetism and Magnetic Materials, 1998, 182 (1/2): 216- 224.
URL
|
8 |
Fernández-Merino M J , Guardia L , Paredes J I , et al. Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions[J]. The Journal of Physical Chemistry C, 2010, 114 (14): 6426- 6432.
doi: 10.1021/jp100603h
|
9 |
Antolini E , Giorgi L , Pozio A , et al. Influence of Nafion loading in the catalyst layer of gas-diffusion electrodes for PEFC[J]. Journal of Power Sources, 1999, 77 (2): 136- 142.
doi: 10.1016/S0378-7753(98)00186-4
|
10 |
Wang Yujue . The electro-peroxone technology as a promising advanced oxidation process for water and wastewater treatment[J]. Electro-Fenton Process, 2018, 11 (1): 57- 84.
URL
|
11 |
Xia G S , Lu Y H , Xu H B . Electrogeneration of hydrogen peroxide for electro-Fenton via oxygen reduction using polyacrylonitrile-based carbon fiber brush cathode[J]. Electrochimica Acta, 2015, 158, 390- 396.
doi: 10.1016/j.electacta.2015.01.102
|
12 |
Ertugay N , Kocakaplan N , Malkoc E . Investigation of pH effect by Fenton-like oxidation with ZVI in treatment of the landfill leachate[J]. International Journal of Mining, Reclamation and Environment, 2017, 31 (6): 404- 411.
doi: 10.1080/17480930.2017.1336608
|
13 |
Hermosilla D , Cortijo M , Huang C P . Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes[J]. The Science of the Total Environment, 2009, 407 (11): 3473- 3481.
doi: 10.1016/j.scitotenv.2009.02.009
|
14 |
Gao L Z , Zhuang J , Nie L , et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanotechnology, 2007, 2 (9): 577- 583.
doi: 10.1038/nnano.2007.260
|
15 |
Lin S S , Gurol M D . Catalytic decomposition of hydrogen peroxide on iron oxide:Kinetics, Mechanism, and implications[J]. Environmental Science & Technology, 1998, 32 (10): 1417- 1423.
URL
|
16 |
Wang N , Zhu L H , Wang D L , et al. Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2[J]. Ultrasonics Sonochemistry, 2010, 17 (3): 526- 533.
URL
|