1 |
Fetzner S . Bacterial degradation of pyridine, indole, quinoline, and their derivatives under different redox conditions[J]. Applied Micro-biology and Biotechnology, 1998, 49 (3): 237- 250.
doi: 10.1007/s002530051164
|
2 |
常灵. 紫外辐射加速吡啶和喹啉的生物降解[D]. 上海: 上海师范大学, 2014.
|
3 |
Mathur A K , Majumder C B , Chatterjee S , et al. Biodegradation of pyridine by the new bacterial isolates S-putrefaciens and B-sphae-ricus[J]. Journal of Hazardous Materials, 2008, 157 (2/3): 335- 343.
URL
|
4 |
Shen Jinyou , He Rui , Wang Lianjun , et al. Biodegradation kinetics of picric acid by Rhodococcus sp. NJUST16 in batch reactors[J]. Jour-nal of Hazardous Materials, 2009, 167 (1/2/3): 193- 198.
URL
|
5 |
Jerry S , O'Loughlin E , Crawford R . Degradation of pyridines in the Environment[J]. Critical Reviews in Environmental Science and Te-chnology, 1989, 19, 309- 340.
|
6 |
Shibin O M , Yesodharan S , Yesodharan E P . Sunlight induced pho-tocatalytic degradation of herbicide diquat in water in presence of ZnO[J]. Journal of Environmental Chemical Engineering, 2015, 3 (2): 1107- 1116.
doi: 10.1016/j.jece.2015.04.026
|
7 |
Huang Yaohua , Zhan Hui , Pankaj B , et al. Paraquat degradation from contaminated environments: current achievements and perspectiv-es[J]. Frontiers in microbiology, 2019, 10, 1754.
doi: 10.3389/fmicb.2019.01754
|
8 |
Chiron S , Fernandez-Alba A , Rodriguez A , et al. Pesticide chemical oxidation: State-of-the-art[J]. Water Research, 2000, 34 (2): 366- 377.
doi: 10.1016/S0043-1354(99)00173-6
|
9 |
Wen Donghui , Zhang Jing , Xiong Ruilin , et al. Bioaugmentation with a pyridine-degrading bacterium in a membrane bioreactor treating pharmaceutical wastewater[J]. Journal of Environmental Sciences, 2013, 25 (11): 2265- 2271.
doi: 10.1016/S1001-0742(12)60278-2
|
10 |
Stuermer D H , Ng D J , Morris C J . Organic contaminants in ground-water near an underground coal gasification site in northeastern Wyoming[J]. Environmental Science & Technology, 1982, 16 (9): 582- 587.
URL
|
11 |
Xue Lanlan , Liu Jiaxin , Li Meidi , et al. Enhanced treatment of co-king wastewater containing phenol, pyridine, and quinoline by inte-gration of an E-Fenton process into biological treatment[J]. Envi-ronmental Science and Pollution Research, 2017, 24 (10): 9765- 9775.
doi: 10.1007/s11356-017-8644-y
|
12 |
Zhu Hao , Ma Wencheng , Han Hongjun , et al. Degradation charac-teristics of two typical N-heterocycles in ozone process: Efficacy, kinetics, pathways, toxicity and its application to real biologically pretreated coal gasification wastewater[J]. Chemosphere, 2018, 209, 319- 327.
doi: 10.1016/j.chemosphere.2018.06.067
|
13 |
Rogers J E , Riley R G , Li S W , et al. Microbial transformation of alkylpyridines in groundwater[J]. Water, Air, and Soil Pollution, 1985, 24 (4): 443- 454.
doi: 10.1007/BF00282494
|
14 |
Kaiser J P , Feng Y , Bollag J M . Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaero-bic conditions[J]. Microbiological Reviews, 1996, 60 (3): 483- 498.
doi: 10.1128/MR.60.3.483-498.1996
|
15 |
Naik M N , Jackson R B , Stokes J , et al. Microbial degradation and phytotoxicity of picloram and other substituted pyridines[J]. Soil Biology and Biochemistry, 1972, 4 (3): 313- 323.
doi: 10.1016/0038-0717(72)90027-2
|
16 |
Rao T K , Epler J L , Guerin M R , et al. Mutagenicity of nitrogen compounds from synthetic crude oils: collection, separation and bio-logical testing[M]. TN(USA): Oak Ridge National Laboratory, 1980: 11- 15.
|
17 |
邓觅, 吴永明, 王建永, 等. 二氯吡啶生产废水的处理应用研究[J]. 工业水处理, 2017, 37 (2): 98- 102.
URL
|
18 |
王祥生, 周腾腾. 二氯吡啶和四氯吡啶废水处理的研究[J]. 环境科技, 2013, 26 (6): 37- 39.
doi: 10.3969/j.issn.1674-4829.2013.06.010
|
19 |
李培睿, 李宗义, 秦广雍. 吡啶及其衍生物微生物降解研究进展[J]. 生物技术, 2007, 17 (4): 96.
doi: 10.3969/j.issn.1004-311X.2007.04.036
|
20 |
Shi Jingxin , Xu Chunyan , Han Yuxing , et al. Enhanced anaerobic biodegradation efficiency and mechanism of quinoline, pyridine, and indole in coal gasification wastewater[J]. Chemical Enginee-ring Journal, 2019, 361, 1019- 1029.
doi: 10.1016/j.cej.2018.12.162
|
21 |
Sun Guoping , Wan Junfeng , Sun Yichen , et al. Enhanced biodegradation of pyridine using sequencing batch biofilm reactor under intermittent micro-aerobic condition[J]. Environmental Technology, 2020, 41 (8): 1034- 1043.
doi: 10.1080/09593330.2018.1518995
|
22 |
Zhang Yanting , Ji Junbin , Xu Siqiong , et al. Biodegradation of picolinic acid by Rhodococcus sp. PA18[J]. Applied Sciences: Basel, 2019, 9 (5): 1006.
doi: 10.3390/app9051006
|
23 |
Zhao Qian , Liu Yu . State of the art of biological processes for coal gasification wastewater treatment[J]. Biotechnology Advances, 2016, 34 (5): 1064- 1072.
doi: 10.1016/j.biotechadv.2016.06.005
|
24 |
Chandra R , Bharagava R N , Kapley A , et al. Isolation and characterization of potential aerobic bacteria capable for pyridine degradation in presence of picoline, phenol and formaldehyde as co-pollutants[J]. World Journal of Microbiology & Biotechnology, 2009, 25 (12): 2113- 2119.
URL
|
25 |
Yao Haiyan , Ren Yuan , Deng Xiuqiong , et al. Dual substrates bio-degradation kinetics of m-cresol and pyridine by Lysinibacillus cresolivorans[J]. Journal of Hazardous Materials, 2011, 186 (2/3): 1136- 1140.
URL
|
26 |
Watson G K , Cain R B . Microbial metabolism of the pyridine ring. Metabolic pathways of pyridine biodegradation by soil bacteria[J]. Biochemical Journal, 1975, 146 (1): 157- 172.
doi: 10.1042/bj1460157
|
27 |
Bai Yaohui , Sun Qinghua , Zhao Cui , et al. Microbial degradation and metabolic pathway of pyridine by a Paracoccus sp strain BW001[J]. Biodegradation, 2008, 19 (6): 915- 926.
doi: 10.1007/s10532-008-9193-3
URL
|
28 |
Qiao Lin , Wang Jianlong . Microbial degradation of pyridine by Para-coccus sp isolated from contaminated soil[J]. Journal of Hazardous Materials, 2010, 176 (1/2/3): 220- 225.
URL
|
29 |
Padoley K V , Rajvaidya A S , Subbarao T V , et al. Biodegradation of pyridine in a completely mixed activated sludge process[J]. Biore-source Technology, 2006, 97 (10): 1225- 1236.
doi: 10.1016/j.biortech.2005.05.020
|
30 |
Shen Jinyou , Zhang Xin , Chen Dan , et al. Characteristics of pyridine biodegradation by a novel bacterial strain, Rhizobium sp. NJUST18[J]. Desalination and Water Treatment, 2015, 53 (7): 2005- 2013.
doi: 10.1080/19443994.2014.915585
|
31 |
Sun Jiquan , Xu Lian , Tang Yueqin , et al. Degradation of pyridine by one Rhodococcus strain in the presence of chromium(Ⅵ) or phenol[J]. Journal of Hazardous Materials, 2011, 191 (1/2/3): 62- 68.
|
32 |
Bai Yaohui , Sun Qinghua , Zhao Cui , et al. Aerobic degradation of pyridine by a new bacterial strain, Shinella zoogloeoides BC026[J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36 (11): 1391- 1400.
|
33 |
Li Jiwu , Cai Weijiang , Cai Jingjing . The characteristics and mecha-nisms of pyridine biodegradation by Streptomyces sp[J]. Journal of Hazardous Materials, 2009, 165 (1/2/3): 950- 954.
URL
|
34 |
Hille R . The mononuclear molybdenum enzymes[J]. Chemical Re-views, 1996, 96 (7): 2757- 2816.
doi: 10.1021/cr950061t
|
35 |
Zhang Yongming , Chang Ling , Yan Ning , et al. UV photolysis for accelerating pyridine biodegradation[J]. Environmental Science & Technology, 2014, 48 (1): 649- 655.
|
36 |
Wang Jing , Jiang Xinbai , Liu Xiaodong , et al. Microbial degradation mechanism of pyridine by Paracoccus sp NJUST30 newly isolated from aerobic granules[J]. Chemical Engineering Journal, 2018, 344, 86- 94.
doi: 10.1016/j.cej.2018.03.059
|
37 |
Bai Yaohui , Sun Qinghua , Zhao Cui , et al. Bioaugmentation treatment for coking wastewater containing pyridine and quinoline in a sequencing batch reactor[J]. Applied Microbiology and Biotechnology, 2010, 87 (5): 1943- 1951.
doi: 10.1007/s00253-010-2670-8
URL
|
38 |
Li Yongmei , Gu Guowei , Zhao Jianfu , et al. Anoxic degradation of nitrogenous heterocyclic compounds by acclimated activated slud-ge[J]. Process Biochemistry, 2001, 37 (1): 81- 86.
doi: 10.1016/S0032-9592(01)00176-5
|
39 |
Kim M K , Singleton I , Yin C R , et al. Influence of phenol on the biodegradation of pyridine by freely suspended and immobilized Pseudomonas putida MK1[J]. Letters in Applied Microbiology, 2006, 42 (5): 495- 500.
doi: 10.1111/j.1472-765X.2006.01910.x
|
40 |
乔琳, 赵宏, 王建龙. 生物强化去除吡啶的特性及微生物种群动态变化分析[J]. 环境科学, 2012, 33 (6): 2052- 2060.
|
41 |
Liang Ji , Li Wang , Zhang Hongling , et al. Coaggregation mechanism of pyridine-degrading strains for the acceleration of the aerobic granulation process[J]. Chemical Engineering Journal, 2018, 338, 176- 183.
doi: 10.1016/j.cej.2018.01.029
|
42 |
Shen Jinyou , Chen Yan , Wu Shijing , et al. Enhanced pyridine biodegradation under anoxic condition: The key role of nitrate as the electron acceptor[J]. Chemical Engineering Journal, 2015, 277, 140- 149.
doi: 10.1016/j.cej.2015.04.109
|
43 |
Hou Cheng , Shen Jinyou , Jiang Xinbai , et al. Enhanced anoxic biodegradation of pyridine coupled to nitrification in an inner loop ano-xic/oxic-dynamic membrane bioreactor(A/O-DMBR)[J]. Bioreso-urce Technology, 2018, 267, 626- 633.
doi: 10.1016/j.biortech.2018.07.105
|
44 |
Liu Xiaodong , Wu Shijing , Zhang Dejin , et al. Simultaneous pyridine biodegradation and nitrogen removal in an aerobic granular system[J]. Journal of Environmental Sciences, 2018, 67, 318- 329.
doi: 10.1016/j.jes.2017.09.016
|