1 |
Calheiros C , Quitério P , Silva G , et al. Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater[J]. Journal of Environmental Management, 2012, 95 (1): 66- 71.
URL
|
2 |
Haddad M , Bazinet L , Barbeau B . Eco-efficient treatment of ion ex-change spent brine via electrodialysis to recover NaCl and minimize waste disposal[J]. Science of The Total Environment, 2019, 690, 400- 409.
doi: 10.1016/j.scitotenv.2019.06.539
|
3 |
李丹丹, 韩建秋. 高盐废水生态处理技术研究进展及展望[J]. 应用技术学报, 2018, 18 (4): 340- 345.
doi: 10.3969/j.issn.2096-3424.2018.04.009
|
4 |
Yun M , Yeon K , Park J , et al. Characterization of biofilm structure and its effect on membrane permeability in MBR for dye wastewater treatment[J]. Water Research, 2006, 40 (1): 45- 52.
doi: 10.1016/j.watres.2005.10.035
|
5 |
Pan Zhanglei , Zhou Jian , Lin Ziyuan , et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process[J]. Bioresource Technology, 2020, 301, 122726.
doi: 10.1016/j.biortech.2019.122726
|
6 |
Vymazal J . Constructed wetlands for treatment of industrial wastewaters: A review[J]. Ecological Engineering, 2014, 73, 724- 751.
doi: 10.1016/j.ecoleng.2014.09.034
|
7 |
付春平, 唐运平, 陈锡剑, 等. 3种植物对泰达高盐再生水景观河道水质的净化[J]. 重庆大学学报: 自然科学版, 2006, 29 (10): 118- 120.
doi: 10.11835/j.issn.1000-582X.2006.10.028
URL
|
8 |
Li Meng , Liang Zhenlin , Callier M , et al. Nutrients removal and substrate enzyme activities in vertical subsurface flow constructed wetlands for mariculture wastewater treatment: Effects of ammonia nitrogen loading rates and salinity levels[J]. Marine Pollution Bulletin, 2018, 131, 142- 150.
doi: 10.1016/j.marpolbul.2018.04.013
|
9 |
Shelef O , Gross A , Rachmilevitch S . Role of plants in a constructed wetland: Current and new perspectives[J]. Water, 2013, 5 (2): 405- 419.
doi: 10.3390/w5020405
|
10 |
张洪刚, 洪剑明. 人工湿地中植物的作用[J]. 湿地科学, 2006, (2): 146- 154.
doi: 10.3969/j.issn.1672-5948.2006.02.012
URL
|
11 |
Vacca G , Wand H , Nikolausz M . Effect of plants and filter materials on bacteria removal in pilotscale constructed wetlands[J]. Water Research, 2005, 39 (7): 1361- 1373.
doi: 10.1016/j.watres.2005.01.005
|
12 |
Wang Zhen , Huang Menglu , Qi Ran , et al. Enhanced nitrogen re-moval and associated microbial characteristics in a modified single-stage tidal flow constructed wetland with step-feeding[J]. Chemi-cal Engineering Journal, 2017, 314, 291- 300.
doi: 10.1016/j.cej.2016.11.060
|
13 |
Wang Yanting , Cai Zhengqin , Sheng Sheng , et al. Comprehensive evaluation of substrate materials for contaminants removal in cons-tructed wetlands[J]. Science of The Total Environment, 2020, 701, 134736.
doi: 10.1016/j.scitotenv.2019.134736
|
14 |
Xu Fei , Cao Fuqian , Kong Qiang , et al. Electricity production and evolution of microbial community in the constructed wetland-microal fuel cell[J]. Chemical Engineering Journal, 2018, 339, 479- 486.
doi: 10.1016/j.cej.2018.02.003
|
15 |
王琴, 瞿贤, ArcangeliJ, 等. 人工湿地植物对高盐废水中COD的去除作用[J]. 环境工程, 2013, 31 (S1): 312- 315.
|
16 |
尚克春, 刘宪斌, 陈晓英. 高盐废水人工湿地处理中耐盐植物的筛选[J]. 农业资源与环境学报, 2014, 31 (1): 74- 78.
|
17 |
Sansanayuth P , Phadungchep A , Ngammontha S . Shrimp pond effluent: Pollution problemsand treatment by constructed wetlands[J]. Water Science and Technology, 1996, 34 (11): 93- 98.
doi: 10.2166/wst.1996.0267
|
18 |
邱金泉, 王静, 张雨山. 人工湿地处理高盐度污水的适用性及研究进展[J]. 工业水处理, 2009, 29 (11): 1- 3.
URL
|
19 |
Liu Ye , Peng Chengyao , Tang Bing , et al. Determination effect of influent salinity and inhibition time on partial nitrification in a sequencing batch reactor treating saline sewage[J]. Desalination, 2009, 246 (1/2/3): 556- 566.
|
20 |
Calheiros C , Teixeira A , Pires C , et al. Bacterial community dyna-mics in horizontal flow constructed wetlands with different plants for high salinity industrial wastewater polishing[J]. Water Research, 2010, 44 (17): 5032- 5038.
doi: 10.1016/j.watres.2010.07.017
URL
|
21 |
Karajic M , Lapanje A , Razinger J , et al. The effect of the application of halotolerant microorganisms on the efficiency of a pilotscale constructed wetland for saline wastewater treatment[J]. Journal of the Serbian Chemical Society, 2010, 75 (1): 129- 142.
doi: 10.2298/JSC1001129K
|
22 |
Wang Xinyi , Zhu Hui , Yan Baixing , et al. Bioaugmented constructed wetlands for denitrification of saline wastewater: A boost for both microorganisms and plants[J]. Environment International, 2020, 138, 105628.
doi: 10.1016/j.envint.2020.105628
|
23 |
Fu Guiping , Zhao Lin , Huangshen Linkun , et al. Isolation and identification of a salt-tolerant aerobic denitrifying bacterial strain and its application to saline wastewater treatment in constructed wetlands[J]. Bioresource Technology, 2019, 290, 121725.
doi: 10.1016/j.biortech.2019.121725
|
24 |
杨萌尧, 吕铭志, 何春光, 等. 基质类型和粒径对垂直潜流人工湿地堵塞效应的研究[J]. 湿地科学, 2017, 15 (3): 391- 395.
|
25 |
秦娟娟. 人工湿地填料对含盐污水中污染物吸附性能研究[D]. 青岛:中国海洋大学, 2014.
|
26 |
Wu Yan , Tam N , Wong M . Effects of salinity on treatment of municipal wastewater by constructed mangrove wetland microcosms[J]. Marine Pollution Bulletin, 2008, 57 (6): 727- 734.
|
27 |
Sun Wei , Zhao Huilin , Wang Fen , et al. Effect of salinity on nitrogen and phosphorus removal pathways in a hydroponic micro-ecosystem planted with Lythrum salicaria L[J]. Ecological Engineering, 2017, 105, 205- 210.
doi: 10.1016/j.ecoleng.2017.04.048
|
28 |
Chyan J , Huang S , Lin C . Impacts of salinity on degradation of pollutions in hybrid constructed wetlands[J]. International Biodeterioration & Biodegradation, 2017, 124, 176- 187.
URL
|
29 |
郝晓地, 孟祥挺, 胡沅胜. 人工湿地温室气体释放、影响及其控制[J]. 中国给水排水, 2016, 32 (22): 39- 47.
|
30 |
卿杰, 王超, 左倬, 等. 大型表流人工湿地不同季节不同进水负荷下水质净化效果研究[J]. 环境工程, 2015, 33 (S1): 190- 193.
|
31 |
Liang Yinxiu , Zhu Hui , Banuelos G , et al. Removal of nutrients in saline wastewater using constructed wetlands: Plant species, influent loads and salinity levels as influencing factors[J]. Chemosphere, 2017, 187, 52- 61.
doi: 10.1016/j.chemosphere.2017.08.087
|
32 |
Werker A , Dougherty J , McHenry J , et al. Treatment variability for wetland wastewater treatment design in cold climates[J]. Ecological Engineering, 2002, 19 (1): 1- 11.
doi: 10.1016/S0925-8574(02)00016-2
|
33 |
Freedman A , Gross A , Shelef O , et al. Salt uptake and evapotranspiration under arid conditions in horizontal subsurface flow constructed wetland planted with halophytes[J]. Ecological Engineering, 2014, 70, 282- 286.
doi: 10.1016/j.ecoleng.2014.06.012
|
34 |
Kim B , Gautier M , Simidoff A , et al. pH and Eh effects on phosphorus fate in constructed wetland's sludge surface deposit[J]. Journal of Environmental Management, 2016, 183, 175- 181.
URL
|
35 |
Alemu T , Lemma E , Mekonnen A , et al. Performance of pilot scale anaerobic-SBR system integrated with constructed wetlands for the treatment of tannery wastewater[J]. Environmental Processes, 2016, 3 (4): 815- 827.
doi: 10.1007/s40710-016-0171-1
|
36 |
Das B , Thakur S , Chaithanya S , et al. Batch investigation of constructed wetland microbial fuel cell with reverse osmosis(RO) concentrate and wastewater mix as substrate[J]. Biomass and Bioen-ergy, 2019, 122, 231- 237.
doi: 10.1016/j.biombioe.2019.01.017
|
37 |
Li Dandan , Chen Fengzhen , Han Jianqiu . A study of the treatment of high-salt chromium-containing wastewater by the photocatalysis-constructed wetland combination method[J]. Water Science and Technology, 2019, 80 (10): 1956- 1966.
doi: 10.2166/wst.2020.017
|
38 |
Zheng Xiaoying , Jin Mengqi , Zhou Xiang , et al. Enhanced removal mechanism of iron carbon micro-electrolysis constructed wetland on C, N, and P in salty permitted effluent of wastewater treatment plant[J]. Science of The Total Environment, 2019, 649, 21- 30.
doi: 10.1016/j.scitotenv.2018.08.195
|
39 |
Shen Youhao , Zhuang Linlan , Zhang Jian , et al. A study of ferric-carbon micro-electrolysis process to enhance nitrogen and phosphorus removal efficiency in subsurface flow constructed wetlands[J]. Chemical Engineering Journal, 2019, 359, 706- 712.
doi: 10.1016/j.cej.2018.11.152
|
40 |
Grattieri M , Minteer D . Microbial fuel cells in saline and hypersa-line environments: Advancements, challenges and future perspectives[J]. Bioelectrochemistry, 2018, 120, 127- 137.
doi: 10.1016/j.bioelechem.2017.12.004
|
41 |
Zhen He , Minteer S , Angenent L . Electricity generation from artificial wastewater using an upflow microbial fuel cell[J]. Environmen-tal Science & Technology, 2005, 39 (14): 5262- 5267.
URL
|
42 |
Xu Fei , Ouyang Delong , Rene E , et al. Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater[J]. Bioresource Technology, 2019, 288, 121462.
doi: 10.1016/j.biortech.2019.121462
|
43 |
吉飞, 何如民, 赵陈冬, 等. 生化—氧化—人工湿地立体处理工艺中试研究[J]. 水处理技术, 2020, 46 (4): 88- 92.
|
44 |
Si Zhihao , Song Xinshan , Wang Yuhui , et al. Untangling the nitrate removal pathways for a constructed wetland-sponge iron coupled system and the impacts of sponge iron on a wetland ecosystem[J]. Journal of Hazardous Materials, 2020, 393, 122407.
doi: 10.1016/j.jhazmat.2020.122407
|