| 1 | Calheiros C ,  Quitério P ,  Silva G , et al.  Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater[J]. Journal of Environmental Management, 2012, 95 (1): 66- 71. URL
 | 
																													
																						| 2 | Haddad M ,  Bazinet L ,  Barbeau B .  Eco-efficient treatment of ion ex-change spent brine via electrodialysis to recover NaCl and minimize waste disposal[J]. Science of The Total Environment, 2019, 690, 400- 409. doi: 10.1016/j.scitotenv.2019.06.539
 | 
																													
																						| 3 | 李丹丹, 韩建秋.  高盐废水生态处理技术研究进展及展望[J]. 应用技术学报, 2018, 18 (4): 340- 345. doi: 10.3969/j.issn.2096-3424.2018.04.009
 | 
																													
																						| 4 | Yun M ,  Yeon K ,  Park J , et al.  Characterization of biofilm structure and its effect on membrane permeability in MBR for dye wastewater treatment[J]. Water Research, 2006, 40 (1): 45- 52. doi: 10.1016/j.watres.2005.10.035
 | 
																													
																						| 5 | Pan Zhanglei ,  Zhou Jian ,  Lin Ziyuan , et al.  Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process[J]. Bioresource Technology, 2020, 301, 122726. doi: 10.1016/j.biortech.2019.122726
 | 
																													
																						| 6 | Vymazal J .  Constructed wetlands for treatment of industrial wastewaters: A review[J]. Ecological Engineering, 2014, 73, 724- 751. doi: 10.1016/j.ecoleng.2014.09.034
 | 
																													
																						| 7 | 付春平, 唐运平, 陈锡剑, 等.  3种植物对泰达高盐再生水景观河道水质的净化[J]. 重庆大学学报: 自然科学版, 2006, 29 (10): 118- 120. doi: 10.11835/j.issn.1000-582X.2006.10.028    
																																					URL
 | 
																													
																						| 8 | Li Meng ,  Liang Zhenlin ,  Callier M , et al.  Nutrients removal and substrate enzyme activities in vertical subsurface flow constructed wetlands for mariculture wastewater treatment: Effects of ammonia nitrogen loading rates and salinity levels[J]. Marine Pollution Bulletin, 2018, 131, 142- 150. doi: 10.1016/j.marpolbul.2018.04.013
 | 
																													
																						| 9 | Shelef O ,  Gross A ,  Rachmilevitch S .  Role of plants in a constructed wetland: Current and new perspectives[J]. Water, 2013, 5 (2): 405- 419. doi: 10.3390/w5020405
 | 
																													
																						| 10 | 张洪刚, 洪剑明.  人工湿地中植物的作用[J]. 湿地科学, 2006, (2): 146- 154. doi: 10.3969/j.issn.1672-5948.2006.02.012    
																																					URL
 | 
																													
																						| 11 | Vacca G ,  Wand H ,  Nikolausz M .  Effect of plants and filter materials on bacteria removal in pilotscale constructed wetlands[J]. Water Research, 2005, 39 (7): 1361- 1373. doi: 10.1016/j.watres.2005.01.005
 | 
																													
																						| 12 | Wang Zhen ,  Huang Menglu ,  Qi Ran , et al.  Enhanced nitrogen re-moval and associated microbial characteristics in a modified single-stage tidal flow constructed wetland with step-feeding[J]. Chemi-cal Engineering Journal, 2017, 314, 291- 300. doi: 10.1016/j.cej.2016.11.060
 | 
																													
																						| 13 | Wang Yanting ,  Cai Zhengqin ,  Sheng Sheng , et al.  Comprehensive evaluation of substrate materials for contaminants removal in cons-tructed wetlands[J]. Science of The Total Environment, 2020, 701, 134736. doi: 10.1016/j.scitotenv.2019.134736
 | 
																													
																						| 14 | Xu Fei ,  Cao Fuqian ,  Kong Qiang , et al.  Electricity production and evolution of microbial community in the constructed wetland-microal fuel cell[J]. Chemical Engineering Journal, 2018, 339, 479- 486. doi: 10.1016/j.cej.2018.02.003
 | 
																													
																						| 15 | 王琴, 瞿贤, ArcangeliJ, 等.  人工湿地植物对高盐废水中COD的去除作用[J]. 环境工程, 2013, 31 (S1): 312- 315. | 
																													
																						| 16 | 尚克春, 刘宪斌, 陈晓英.  高盐废水人工湿地处理中耐盐植物的筛选[J]. 农业资源与环境学报, 2014, 31 (1): 74- 78. | 
																													
																						| 17 | Sansanayuth P ,  Phadungchep A ,  Ngammontha S .  Shrimp pond effluent: Pollution problemsand treatment by constructed wetlands[J]. Water Science and Technology, 1996, 34 (11): 93- 98. doi: 10.2166/wst.1996.0267
 | 
																													
																						| 18 | 邱金泉, 王静, 张雨山.  人工湿地处理高盐度污水的适用性及研究进展[J]. 工业水处理, 2009, 29 (11): 1- 3. URL
 | 
																													
																						| 19 | Liu Ye ,  Peng Chengyao ,  Tang Bing , et al.  Determination effect of influent salinity and inhibition time on partial nitrification in a sequencing batch reactor treating saline sewage[J]. Desalination, 2009, 246 (1/2/3): 556- 566. | 
																													
																						| 20 | Calheiros C ,  Teixeira A ,  Pires C , et al.  Bacterial community dyna-mics in horizontal flow constructed wetlands with different plants for high salinity industrial wastewater polishing[J]. Water Research, 2010, 44 (17): 5032- 5038. doi: 10.1016/j.watres.2010.07.017    
																																					URL
 | 
																													
																						| 21 | Karajic M ,  Lapanje A ,  Razinger J , et al.  The effect of the application of halotolerant microorganisms on the efficiency of a pilotscale constructed wetland for saline wastewater treatment[J]. Journal of the Serbian Chemical Society, 2010, 75 (1): 129- 142. doi: 10.2298/JSC1001129K
 | 
																													
																						| 22 | Wang Xinyi ,  Zhu Hui ,  Yan Baixing , et al.  Bioaugmented constructed wetlands for denitrification of saline wastewater: A boost for both microorganisms and plants[J]. Environment International, 2020, 138, 105628. doi: 10.1016/j.envint.2020.105628
 | 
																													
																						| 23 | Fu Guiping ,  Zhao Lin ,  Huangshen Linkun , et al.  Isolation and identification of a salt-tolerant aerobic denitrifying bacterial strain and its application to saline wastewater treatment in constructed wetlands[J]. Bioresource Technology, 2019, 290, 121725. doi: 10.1016/j.biortech.2019.121725
 | 
																													
																						| 24 | 杨萌尧, 吕铭志, 何春光, 等.  基质类型和粒径对垂直潜流人工湿地堵塞效应的研究[J]. 湿地科学, 2017, 15 (3): 391- 395. | 
																													
																						| 25 | 秦娟娟. 人工湿地填料对含盐污水中污染物吸附性能研究[D]. 青岛:中国海洋大学, 2014. | 
																													
																						| 26 | Wu Yan ,  Tam N ,  Wong M .  Effects of salinity on treatment of municipal wastewater by constructed mangrove wetland microcosms[J]. Marine Pollution Bulletin, 2008, 57 (6): 727- 734. | 
																													
																						| 27 | Sun Wei ,  Zhao Huilin ,  Wang Fen , et al.  Effect of salinity on nitrogen and phosphorus removal pathways in a hydroponic micro-ecosystem planted with Lythrum salicaria L[J]. Ecological Engineering, 2017, 105, 205- 210. doi: 10.1016/j.ecoleng.2017.04.048
 | 
																													
																						| 28 | Chyan J ,  Huang S ,  Lin C .  Impacts of salinity on degradation of pollutions in hybrid constructed wetlands[J]. International Biodeterioration & Biodegradation, 2017, 124, 176- 187. URL
 | 
																													
																						| 29 | 郝晓地, 孟祥挺, 胡沅胜.  人工湿地温室气体释放、影响及其控制[J]. 中国给水排水, 2016, 32 (22): 39- 47. | 
																													
																						| 30 | 卿杰, 王超, 左倬, 等.  大型表流人工湿地不同季节不同进水负荷下水质净化效果研究[J]. 环境工程, 2015, 33 (S1): 190- 193. | 
																													
																						| 31 | Liang Yinxiu ,  Zhu Hui ,  Banuelos G , et al.  Removal of nutrients in saline wastewater using constructed wetlands: Plant species, influent loads and salinity levels as influencing factors[J]. Chemosphere, 2017, 187, 52- 61. doi: 10.1016/j.chemosphere.2017.08.087
 | 
																													
																						| 32 | Werker A ,  Dougherty J ,  McHenry J , et al.  Treatment variability for wetland wastewater treatment design in cold climates[J]. Ecological Engineering, 2002, 19 (1): 1- 11. doi: 10.1016/S0925-8574(02)00016-2
 | 
																													
																						| 33 | Freedman A ,  Gross A ,  Shelef O , et al.  Salt uptake and evapotranspiration under arid conditions in horizontal subsurface flow constructed wetland planted with halophytes[J]. Ecological Engineering, 2014, 70, 282- 286. doi: 10.1016/j.ecoleng.2014.06.012
 | 
																													
																						| 34 | Kim B ,  Gautier M ,  Simidoff A , et al.  pH and Eh effects on phosphorus fate in constructed wetland's sludge surface deposit[J]. Journal of Environmental Management, 2016, 183, 175- 181. URL
 | 
																													
																						| 35 | Alemu T ,  Lemma E ,  Mekonnen A , et al.  Performance of pilot scale anaerobic-SBR system integrated with constructed wetlands for the treatment of tannery wastewater[J]. Environmental Processes, 2016, 3 (4): 815- 827. doi: 10.1007/s40710-016-0171-1
 | 
																													
																						| 36 | Das B ,  Thakur S ,  Chaithanya S , et al.  Batch investigation of constructed wetland microbial fuel cell with reverse osmosis(RO) concentrate and wastewater mix as substrate[J]. Biomass and Bioen-ergy, 2019, 122, 231- 237. doi: 10.1016/j.biombioe.2019.01.017
 | 
																													
																						| 37 | Li Dandan ,  Chen Fengzhen ,  Han Jianqiu .  A study of the treatment of high-salt chromium-containing wastewater by the photocatalysis-constructed wetland combination method[J]. Water Science and Technology, 2019, 80 (10): 1956- 1966. doi: 10.2166/wst.2020.017
 | 
																													
																						| 38 | Zheng Xiaoying ,  Jin Mengqi ,  Zhou Xiang , et al.  Enhanced removal mechanism of iron carbon micro-electrolysis constructed wetland on C, N, and P in salty permitted effluent of wastewater treatment plant[J]. Science of The Total Environment, 2019, 649, 21- 30. doi: 10.1016/j.scitotenv.2018.08.195
 | 
																													
																						| 39 | Shen Youhao ,  Zhuang Linlan ,  Zhang Jian , et al.  A study of ferric-carbon micro-electrolysis process to enhance nitrogen and phosphorus removal efficiency in subsurface flow constructed wetlands[J]. Chemical Engineering Journal, 2019, 359, 706- 712. doi: 10.1016/j.cej.2018.11.152
 | 
																													
																						| 40 | Grattieri M ,  Minteer D .  Microbial fuel cells in saline and hypersa-line environments: Advancements, challenges and future perspectives[J]. Bioelectrochemistry, 2018, 120, 127- 137. doi: 10.1016/j.bioelechem.2017.12.004
 | 
																													
																						| 41 | Zhen He ,  Minteer S ,  Angenent L .  Electricity generation from artificial wastewater using an upflow microbial fuel cell[J]. Environmen-tal Science & Technology, 2005, 39 (14): 5262- 5267. URL
 | 
																													
																						| 42 | Xu Fei ,  Ouyang Delong ,  Rene E , et al.  Electricity production enhancement in a constructed wetland-microbial fuel cell system for treating saline wastewater[J]. Bioresource Technology, 2019, 288, 121462. doi: 10.1016/j.biortech.2019.121462
 | 
																													
																						| 43 | 吉飞, 何如民, 赵陈冬, 等.  生化—氧化—人工湿地立体处理工艺中试研究[J]. 水处理技术, 2020, 46 (4): 88- 92. | 
																													
																						| 44 | Si Zhihao ,  Song Xinshan ,  Wang Yuhui , et al.  Untangling the nitrate removal pathways for a constructed wetland-sponge iron coupled system and the impacts of sponge iron on a wetland ecosystem[J]. Journal of Hazardous Materials, 2020, 393, 122407. doi: 10.1016/j.jhazmat.2020.122407
 |