1 |
Babuponnusami A , Muthukumar K . A review on Fenton and improvements to the Fenton process for wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2014, 2 (1): 557- 572.
doi: 10.1016/j.jece.2013.10.011
|
2 |
Clarizia L , Russo D , Di Somma I , et al. Homogeneous photo-Fenton processes at near neutral pH: A review[J]. Applied Catalysis B: Environmental, 2017, 209, 358- 371.
doi: 10.1016/j.apcatb.2017.03.011
|
3 |
De Luca A , Dantas R F , Esplugas S . Assessment of iron chelates efficiency for photo-Fenton at neutral pH[J]. Water Research, 2014, 61, 232- 242.
doi: 10.1016/j.watres.2014.05.033
URL
|
4 |
Wang Nannan , Zheng Tong , Zhang Guangshan , et al. A review on Fenton-like processes for organic wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2016, 4 (1): 762- 787.
doi: 10.1016/j.jece.2015.12.016
|
5 |
He Jie , Yang Xiaofang , Men Bin , et al. Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review[J]. Journal of Environmental Sciences, 2016, 39, 97- 109.
doi: 10.1016/j.jes.2015.12.003
|
6 |
Brillas E , Garcia-Segura S . Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: A review on the relevance of phenol as model molecule[J]. Separation and Purification Technology, 2020, 237, 116337.
doi: 10.1016/j.seppur.2019.116337
|
7 |
Zhang Menghui , Dong Hui , Zhao Liang , et al. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. Science of The Total Environment, 2019, 670, 110- 121.
doi: 10.1016/j.scitotenv.2019.03.180
|
8 |
Vorontsov A V . Advancing Fenton and photo-Fenton water treatment through the catalyst design[J]. Journal of Hazardous Materials, 2019, 372, 103- 112.
doi: 10.1016/j.jhazmat.2018.04.033
|
9 |
Zhu Yanping , Zhu Runliang , Xi Yunfei , et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review[J]. Applied Catalysis B: Environmental, 2019, 255, 117739.
doi: 10.1016/j.apcatb.2019.05.041
|
10 |
Minella M , Marchetti G , De Laurentiis E , et al. Photo-Fenton oxidation of phenol with magnetite as iron source[J]. Applied Catalysis B: Environmental, 2014, 154/155, 102- 109.
doi: 10.1016/j.apcatb.2014.02.006
|
11 |
Ayoub H , Roques-Carmes T , Potier O , et al. Iron-impregnated zeolite catalyst for efficient removal of micropollutants at very low concentration from Meurthe river[J]. Environmental Science and Pollution Research, 2018, 25 (35): 34950- 34967.
doi: 10.1007/s11356-018-1214-0
|
12 |
Ojha D P , Joshi M K , Kim H J . Photo-Fenton degradation of organic pollutants using a zinc oxide decorated iron oxide/reduced graphene oxide nanocomposite[J]. Ceramics International, 2017, 43 (1): 1290- 1297.
doi: 10.1016/j.ceramint.2016.10.079
|
13 |
Wang Huixiang , Wang Conghui , Cui Xinmin , et al. Design and facile one-step synthesis of FeWO4/Fe2O3 di-modified WO3 with super high photocatalytic activity toward degradation of quasi-phenothiazine dyes[J]. Applied Catalysis B: Environmental, 2018, 221, 169- 178.
doi: 10.1016/j.apcatb.2017.09.011
|
14 |
Zhu Dinglong , Liu Shaomin , Chen Meiling , et al. Flower-like-flake Fe3O4/g-C3N4 nanocomposite: Facile synthesis, characterization, and enhanced photocatalytic performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537, 372- 382.
URL
|
15 |
Song Ximing , Zhou Xin , Yuan Chunxue , et al. One-dimensional Fe2O3/TiO2 photoelectrode and investigation of its photoelectric properties in photoelectrochemical cell[J]. Applied Surface Science, 2017, 397, 112- 118.
doi: 10.1016/j.apsusc.2016.11.143
|
16 |
朱永法, 姚文清, 宗瑞隆. 光催化: 环境净化与绿色能源应用探索[M]. 北京: 化学工业出版社, 2015: 122- 123.
|
17 |
梁庆华. 石墨相氮化碳的结构调控及增强光催化性能研究[D]. 北京: 清华大学, 2016.
|
18 |
Xu Lejin , Wang Jianlong . Fenton-like degradation of 2, 4-dichlorophenol using Fe3O4 magnetic nanoparticles[J]. Applied Catalysis B: Environmental, 2012, 123/124, 117- 126.
doi: 10.1016/j.apcatb.2012.04.028
|
19 |
Guo He , Jiang Nan , Wang Huijuan , et al. Pulsed discharge plasma induced WO3 catalysis for synergetic degradation of ciprofloxacin in water: Synergetic mechanism and degradation pathway[J]. Chemosphere, 2019, 230, 190- 200.
doi: 10.1016/j.chemosphere.2019.05.011
|
20 |
Yoon M , Oh Y , Hong S , et al. Synergistically enhanced photocatalytic activity of graphitic carbon nitride and WO3 nanohybrids mediated by photo-Fenton reaction and H2O2[J]. Applied Catalysis B: Environmental, 2017, 206, 263- 270.
doi: 10.1016/j.apcatb.2017.01.038
|
21 |
Banić N D , Abramović B F , Krstić J B , et al. Novel WO3/Fe3O4 magnetic photocatalysts: Preparation, characterization and thiacloprid photodegradation[J]. Journal of Industrial and Engineering Chemistry, 2019, 70, 264- 275.
doi: 10.1016/j.jiec.2018.10.025
|
22 |
Balamurugan M , Yun Gun , Ahn K , et al. Revealing the beneficial effects of FeVO4 Nanoshell layer on the BiVO4 inverse opal core layer for photoelectrochemical water oxidation[J]. The Journal of Physical Chemistry C, 2017, 121 (14): 7625- 7634.
doi: 10.1021/acs.jpcc.6b12516
|
23 |
Hernández-Uresti D B , Alanis-Moreno C , Sanchez-Martinez D . Novel and stable Fe-BiVO4 nanocatalyst by efficient dual process in the ciprofloxacin degradation[J]. Materials Science in Semiconductor Processing, 2019, 102, 104585.
doi: 10.1016/j.mssp.2019.104585
|
24 |
Huang Hongwei , Xiao Ke , Zhang Tierui , et al. Rational design on 3D hierarchical bismuth oxyiodides via in situ self-template phase transformation and phase-junction construction for optimizing photocatalysis against diverse contaminants[J]. Applied Catalysis B: Environmental, 2017, 203, 879- 888.
doi: 10.1016/j.apcatb.2016.10.082
|
25 |
Xu Tianyuan , Zhu Runliang , Zhu Gangqiang , et al. Mechanisms for the enhanced photo-Fenton activity of ferrihydrite modified with BiVO4 at neutral pH[J]. Applied Catalysis B: Environmental, 2017, 212, 50- 58.
doi: 10.1016/j.apcatb.2017.04.064
|
26 |
Zhu Gangqiang , Hojamberdiev M , Que Wenxiu , et al. Hydrothermal synthesis and visible-light photocatalytic activity of porous peanutlike BiVO4 and BiVO4/Fe3O4 submicron structures[J]. Ceramics International, 2013, 39 (8): 9163- 9172.
doi: 10.1016/j.ceramint.2013.05.017
URL
|
27 |
Kumar A , Shalini , Sharma G , et al. Facile hetero-assembly of superparamagnetic Fe3O4/BiVO4 stacked on biochar for solar photo-degradation of methyl paraben and pesticide removal from soil[J]. Journal of Photochemistry & Photobiology, A: Chemistry, 2017, 337, 118- 131.
URL
|
28 |
Ding Yong , Yang I S , Li Zhaoqian , et al. Nanoporous TiO2 spheres with tailored textural properties: Controllable synthesis, formation mechanism, and photochemical applications[J]. Progress in Materials Science, 2020, 109, 100620.
doi: 10.1016/j.pmatsci.2019.100620
|
29 |
Xu Zhenmin , Zheng Ru , Chen Yao , et al. Ordered mesoporous Fe/TiO2 with light enhanced photo-Fenton activity[J]. Chinese Journal of Catalysis, 2019, 40 (5): 631- 637.
URL
|
30 |
Hassan M E , Chen Yanbo , Liu Guanglong , et al. Heterogeneous photo-Fenton degradation of methyl orange by Fe2O3/TiO2 nanoparticles under visible light[J]. Journal of Water Process Engineering, 2016, 12, 52- 57.
doi: 10.1016/j.jwpe.2016.05.014
|
31 |
Deng Yuanxin , Xing Mingyang , Zhang Jinlong . An advanced TiO2/Fe2TiO5/Fe2O3 triple-heterojunction with enhanced and stable visible-light-driven Fenton reaction for the removal of organic pollutants[J]. Applied Catalysis B: Environmental, 2017, 211, 157- 166.
doi: 10.1016/j.apcatb.2017.04.037
|
32 |
Sun Qiong , Hong Yong , Liu Qiuhong , et al. Synergistic operation of photocatalytic degradation and Fenton process by magnetic Fe3O4 loaded TiO2[J]. Applied Surface Science, 2018, 430, 399- 406.
doi: 10.1016/j.apsusc.2017.08.085
|
33 |
Kianfar A H , Arayesh M A . Synthesis, characterization and investigation of photocatalytic and catalytic applications of Fe3O4/TiO2/CuO nanoparticles for degradation of MB and reduction of nitrophenols[J]. Journal of Environmental Chemical Engineering, 2020, 8 (1): 103640.
doi: 10.1016/j.jece.2019.103640
|
34 |
Prasad C , Liu Qinqin , Tang Hua , et al. An overview of graphene oxide supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications[J]. Journal of Molecular Liquids, 2020, 297, 111826.
doi: 10.1016/j.molliq.2019.111826
|
35 |
Zubir N A , Yacou C , Motuzas J , et al. The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO-Fe3O4[J]. Chemical Communications, 2015, 51 (45): 9291- 9293.
doi: 10.1039/C5CC02292D
|
36 |
Jiang Xiaoying , Li Lingling , Cui Yanrui , et al. New branch on old tree: Green-synthesized RGO/Fe3O4 composite as a photo-Fenton catalyst for rapid decomposition of methylene blue[J]. Ceramics International, 2017, 43 (16): 14361- 14368.
doi: 10.1016/j.ceramint.2017.07.195
|
37 |
Yu Lian , Chen Jiandong , Liang Zhen , et al. Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-Fenton catalyst[J]. Separation and Purification Technology, 2016, 171, 80- 87.
doi: 10.1016/j.seppur.2016.07.020
|
38 |
Inagaki M , Tsumura T , Kinumoto T , et al. Graphitic carbon nitrides (g-C3N4) with comparative discussion to carbon materials[J]. Carbon, 2019, 141, 580- 607.
doi: 10.1016/j.carbon.2018.09.082
|
39 |
Hu Jinshan , Zhang Pengfei , An Weijia , et al. In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater[J]. Applied Catalysis B: Environmental, 2019, 245, 130- 142.
doi: 10.1016/j.apcatb.2018.12.029
|
40 |
An Sufeng , Zhang Guanghui , Wang Tingwen , et al. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride(g-C3N4) for highly efficient catalytic advanced oxidation processes[J]. ACS Nano, 2018, 12 (9): 9441- 9450.
doi: 10.1021/acsnano.8b04693
|
41 |
Wang Xunhe , Nan Zhaodong . Highly efficient Fenton-like catalyst Fe-g-C3N4 porous nanosheets formation and catalytic mechanism[J]. Separation and Purification Technology, 2020, 233, 116023.
doi: 10.1016/j.seppur.2019.116023
|
42 |
Hu Jinshan , Zhang Pengfei , Cui Jifang , et al. High-efficiency removal of phenol and coking wastewater via photocatalysis-Fenton synergy over a Fe-g-C3N4 graphene hydrogel 3D structure[J]. Journal of Industrial and Engineering Chemistry, 2020, 84, 305- 314.
doi: 10.1016/j.jiec.2020.01.012
|
43 |
Qian Xufang , Wu Yunwen , Kan Miao , et al. FeOOH quantum dots coupled g-C3N4 for visible light driving photo-Fenton degradation of organic pollutants[J]. Applied Catalysis B: Environmental, 2018, 237, 513- 520.
doi: 10.1016/j.apcatb.2018.05.074
|
44 |
He Donglin , Chen Yanfeng , Situ Yue , et al. Synthesis of ternary g-C3N4/Ag/γ-FeOOH photocatalyst: An integrated heterogeneous Fenton-like system for effectively degradation of azo dye methyl orange under visible light[J]. Applied Surface Science, 2017, 425, 862- 872.
doi: 10.1016/j.apsusc.2017.06.124
|
45 |
Borthakur S , Saikia L . ZnFe2O4@g-C3N4 nanocomposites: An efficient catalyst for Fenton-like photodegradation of environmentally pollutant Rhodamine B[J]. Journal of Environmental Chemical Engineering, 2019, 7 (2): 103035.
doi: 10.1016/j.jece.2019.103035
|
46 |
Palanivel B , Mudisoodum Perumal S D , Maiyalagan T , et al. Rational design of ZnFe2O4/g-C3N4 nanocomposite for enhanced photoFenton reaction and supercapacitor performance[J]. Applied Surface Science, 2019, 498, 143807.
doi: 10.1016/j.apsusc.2019.143807
|