1 |
Margallo M , Ziegler-Rodriguez K , Vazquez-Rowe I , et al. Enhancing waste management strategies in Latin America under a holistic environmental assessment perspective:A review for policy support[J]. Sci. Total Environ., 2019, 689, 1255- 1275.
doi: 10.1016/j.scitotenv.2019.06.393
|
2 |
Yan Hong , Cousins I T , Zhang Chaojie , et al. Perfluoroalkyl acids in municipal landfill leachates from China:Occurrence, fate during leachate treatment and potential impact on groundwater[J]. Sci. Total Environ., 2015, 524/525, 23- 31.
doi: 10.1016/j.scitotenv.2015.03.111
|
3 |
Wang Huawei , Wang Yanan , Li Xiaoyue , et al. Removal of humic substances from reverse osmosis(RO) and nanofiltration(NF) concentrated leachate using continuously ozone generation-reaction treatment equipment[J]. Waste Manag., 2016, 56, 271- 279.
doi: 10.1016/j.wasman.2016.07.040
|
4 |
Chai Xiaoli , Hao Yongxia , Liu Guixiang , et al. Spectroscopic studies of the effect of aerobic conditions on the chemical characteristics of humic acid in landfill leachate and its implication for the environment[J]. Chemosphere, 2013, 91 (7): 1058- 1063.
doi: 10.1016/j.chemosphere.2013.01.052
|
5 |
Comstock S E , Boyer T H , Graf K C , et al. Effect of landfill characteristics on leachate organic matter properties and coagulation treatability[J]. Chemosphere, 2010, 81 (7): 976- 983.
doi: 10.1016/j.chemosphere.2010.07.030
|
6 |
陆景波, 王丹, 邓俊平, 等. 我国垃圾渗滤液处理现状及发展方向[J]. 中国标准化, 2018, (16): 235- 236.
doi: 10.3969/j.issn.1002-5944.2018.16.127
|
7 |
Gupta A , Zhao R , Novak J T , et al. Application of Fenton's reagent as a polishing step for removal of UV quenching organic constituents in biologically treated landfill leachates[J]. Chemosphere, 2014, 105, 82- 86.
doi: 10.1016/j.chemosphere.2013.12.066
|
8 |
Huo Shouliang , Xi Beidou , Yu Haichan , et al. Dissolved organic matter in leachate from different treatment processes[J]. Water and Environment Journal, 2009, 23 (1): 15- 22.
doi: 10.1111/j.1747-6593.2007.00104.x
|
9 |
Xu Q , Siracusa G , Di Gregorio S , et al. COD removal from biologically stabilized landfill leachate using Advanced Oxidation Processes (AOPs)[J]. Process Safety and Environmental Protection, 2018, 120, 278- 285.
doi: 10.1016/j.psep.2018.09.014
|
10 |
Bolyard S C , Reinhart D R . Evaluation of leachate dissolved organic nitrogen discharge effect on wastewater effluent quality[J]. Waste Manag., 2017, 65, 47- 53.
doi: 10.1016/j.wasman.2017.03.025
|
11 |
Zhao Renzun , Novak J T , Goldsmith C D . Evaluation of on-site biological treatment for landfill leachates and its impact:A size distribution study[J]. Water Res., 2012, 46 (12): 3837- 3848.
doi: 10.1016/j.watres.2012.04.022
|
12 |
Zhao Renzun , Gupta A , Novak J T , et al. Characterization and treatment of organic constituents in landfill leachates that influence the UV disinfection in the publicly owned treatment works(POTWs)[J]. J. Hazard. Mater., 2013, 258/259, 1- 9.
doi: 10.1016/j.jhazmat.2013.04.026
|
13 |
Musikavong C , Wattanachira S . Reduction of dissolved organic matter in terms of DOC, UV254, SUVA and THMFP in industrial estate wastewater treated by stabilization ponds[J]. Environ. Monit. Assess., 2007, 134 (1/2/3): 489- 497.
|
14 |
Bolyard S C , Motlagh A M , Lozinski D , et al. Impact of organic matter from leachate discharged to wastewater treatment plants on effluent quality and UV disinfection[J]. Waste Manag., 2019, 88, 257- 267.
doi: 10.1016/j.wasman.2019.03.036
|
15 |
Liu Jinlin , Li Xiaoyan , Xie Yuefeng , et al. Characterization of soluble microbial products as precursors of disinfection byproducts in drinking water supply[J]. Sci. Total Environ., 2014, 472, 818- 824.
doi: 10.1016/j.scitotenv.2013.11.139
|
16 |
Gao Zechen , Lin Yili , Xu Bin , et al. Effect of UV wavelength on humic acid degradation and disinfection by-product formation during the UV/chlorine process[J]. Water Res., 2019, 154, 199- 209.
doi: 10.1016/j.watres.2019.02.004
|
17 |
Xu Juan , Yu Hanqing , Sheng Guoping . Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids:Surface plasmon resonance and isothermal titration microcalorimetry analysis[J]. J. Hazard. Mater., 2016, 302, 262- 266.
doi: 10.1016/j.jhazmat.2015.09.058
|
18 |
Jones M N , Bryan N D . Colloidal properties of humic substances[J]. Advances in Colloid and Interface Science, 1998, 78 (1): 1- 48.
doi: 10.1016/S0001-8686(98)00058-X
|
19 |
王书明, 崔俊涛, 李筱茵, 等. 微生物对垃圾渗滤液中胡敏酸降解和形成的影响[J]. 科技视界, 2016, (7): 86- 87.
doi: 10.3969/j.issn.2095-2457.2016.07.056
|
20 |
Castagnoli O , Musmeci L , Zavattiero E , et al. Humic substances and humification rate in a municipal refuse disposed of in a landfill[J]. Water Air and Soil Pollution, 1990, 53 (1/2): 1- 12.
|
21 |
Nanny M A , Ratasuk N . Characterization and comparison of hydrophobic neutral and hydrophobic acid dissolved organic carbon isolated from three municipal landfill leachates[J]. Water Research, 2002, 36 (6): 1572- 1584.
doi: 10.1016/S0043-1354(01)00359-1
|
22 |
Kang K H , Shin H S , Park H . Characterization of humic substances present in landfill leachates with different landfill ages and its implications[J]. Water Research, 2002, 36 (16): 4023- 4032.
doi: 10.1016/S0043-1354(02)00114-8
|
23 |
Gupta A , Zhao R , Novak J T , et al. Variation in organic matter characteristics of landfill leachates in different stabilisation stages[J]. Waste. Manag. Res., 2014, 32 (12): 1192- 1199.
doi: 10.1177/0734242X14550739
|
24 |
Zhang Qiqi , Tian Baohu , Zhang Xuan , et al. Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants[J]. Waste Management, 2013, 33 (11): 2277- 2286.
doi: 10.1016/j.wasman.2013.07.021
|
25 |
Zhang Long , Li Aimin , Lu Yufei , et al. Characterization and removal of dissolved organic matter(DOM) from landfill leachate rejected by nanofiltration[J]. Waste Management, 2009, 29 (3): 1035- 1040.
doi: 10.1016/j.wasman.2008.08.020
|
26 |
Christensen J B , Jensen D L , Gron C , et al. Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater[J]. Water Research, 1998, 32 (1): 125- 135.
doi: 10.1016/S0043-1354(97)00202-9
|
27 |
Qi Guangxia , Yue Dongbei , Nie Yongfeng . Characterization of humic substances in bio-treated municipal solid waste landfill leachate[J]. Frontiers of Environmental Science & Engineering, 2012, 6 (5): 711- 716.
|
28 |
Iskander S M , Novak J T , Brazil B , et al. Percarbonate oxidation of landfill leachates towards removal of ultraviolet quenchers[J]. Environmental Science-Water Research & Technology, 2017, 3 (6): 1162- 1170.
|
29 |
Weishaar J L , Aiken G R , Bergamaschi B A , et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37 (20): 4702- 4708.
|
30 |
Croue J P . Isolation of humic and non-humic NOM fractions:Structural characterization[J]. Environmental Monitoring and Assessment, 2004, 92 (1/2/3): 193- 207.
|
31 |
Baccot C , Pallier V , Feuillade-Cathalifaud G . Biochemical methane potential of fractions of organic matter extracted from a municipal solid waste leachate:Impact of their hydrophobic character[J]. Waste Management, 2017, 63, 257- 266.
doi: 10.1016/j.wasman.2016.11.025
|
32 |
Amaral-Silva N , Martins R C , Castro-Silva S , et al. Ozonation and perozonation on the biodegradability improvement of a landfill leachate[J]. Journal of Environmental Chemical Engineering, 2016, 4 (1): 527- 533.
doi: 10.1016/j.jece.2015.12.002
|
33 |
Chys M , Oloibiri V A , Audenaert W T M , et al. Ozonation of biologically treated landfill leachate:Efficiency and insights in organic conversions[J]. Chemical Engineering Journal, 2015, 277, 104- 111.
doi: 10.1016/j.cej.2015.04.099
|
34 |
Chen Weiming , Li Qibin . Elimination of UV-quenching substances from MBR- and SAARB-treated mature landfill leachates in an ozonation process:A comparative study[J]. Chemosphere, 2020, 242, 1- 10.
|
35 |
Jung C , Deng Yang , Zhao Renzun , et al. Chemical oxidation for mitigation of UV-quenching substances(UVQS) from municipal landfill leachate:Fenton process versus ozonation[J]. Water Res., 2017, 108, 260- 270.
doi: 10.1016/j.watres.2016.11.005
|
36 |
Fernandes A , Spranger P , Fonseca A D , et al. Effect of electrochemical treatments on the biodegradability of sanitary landfill leachates[J]. Applied Catalysis B:Environmental, 2014, 144, 514- 520.
doi: 10.1016/j.apcatb.2013.07.054
|
37 |
Moreira F C , Soler J , Fonseca A , et al. Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate[J]. Water Res., 2015, 81, 375- 387.
doi: 10.1016/j.watres.2015.05.036
|
38 |
Song Peipei , Yang Zhaohui , Zeng Guangming , et al. Electrocoagulation treatment of arsenic in wastewaters:A comprehensive review[J]. Chemical Engineering Journal, 2017, 317, 707- 725.
doi: 10.1016/j.cej.2017.02.086
|
39 |
Martínez-Huitle C A , Panizza M . Electrochemical oxidation of organic pollutants for wastewater treatment[J]. Current Opinion in Electrochemistry, 2018, 11, 62- 71.
doi: 10.1016/j.coelec.2018.07.010
|
40 |
Anastasiou E , Lorentz K O , Stein G J , et al. Prehistoric schistosomiasis parasite found in the Middle East[J]. The Lancet Infectious Diseases, 2014, 14 (7): 553- 554.
doi: 10.1016/S1473-3099(14)70794-7
|
41 |
Pulkka S , Martikainen M , Bhatnagar A , et al. Electrochemical methods for the removal of anionic contaminants from water-A review[J]. Separation and Purification Technology, 2014, 132, 252- 271.
doi: 10.1016/j.seppur.2014.05.021
|
42 |
Liu Xingjian , Novak J T , He Zhen . Removal of landfill leachate ultraviolet quenching substances by electricity induced humic acid precipitation and electrooxidation in a membrane electrochemical reactor[J]. Sci. Total Environ., 2019, 689, 571- 579.
doi: 10.1016/j.scitotenv.2019.06.329
|
43 |
Urtiaga A , Rueda A , Anglada A , et al. Integrated treatment of landfill leachates including electrooxidation at pilot plant scale[J]. J. Hazard. Mater., 2009, 166 (2/3): 1530- 1534.
|
44 |
Zhang Cheng , Liu Jianyong , Yang Xiaojian , et al. Degradation of refractory organics in biotreated landfill leachate using high voltage pulsed discharge combined with TiO2[J]. J. Hazard. Mater., 2017, 326, 221- 228.
doi: 10.1016/j.jhazmat.2016.12.034
|
45 |
Iskander S M , Brazil B , Novak J T , et al. Resource recovery from landfill leachate using bioelectrochemical systems:Opportunities, challenges, and perspectives[J]. Bioresour. Technol., 2016, 201, 347- 354.
doi: 10.1016/j.biortech.2015.11.051
|
46 |
Iskander S M , Novak J T , Brazil B , et al. Simultaneous energy generation and UV quencher removal from landfill leachate using a microbial fuel cell[J]. Environ. Sci. Pollut. Res. Int., 2017, 24 (33): 26040- 26048.
doi: 10.1007/s11356-017-0231-8
|
47 |
Oulego P , Collado S , Laca A , et al. Impact of leachate composition on the advanced oxidation treatment[J]. Water Res., 2016, 88, 389- 402.
doi: 10.1016/j.watres.2015.09.048
|
48 |
Hermosilla D , Cortijo M , Huang C P . Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes[J]. Sci. Total Environ., 2009, 407, 3473- 3481.
doi: 10.1016/j.scitotenv.2009.02.009
|
49 |
Pignatello J J , Oliveros E , MacKay A . Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36 (1): 1- 84.
doi: 10.1080/10643380500326564
|
50 |
Qiang Zhimin , Chang J H , Huang C P . Electrochemical regeneration of Fe2+ in Fenton oxidation processes[J]. Water Research, 2003, 37 (6): 1308- 1319.
doi: 10.1016/S0043-1354(02)00461-X
|
51 |
Wiszniowski J , Robert D , Surmacz-Gorska J , et al. Photocatalytic decomposition of humic acids on TiO2 Part I:Discussion of adsorption and mechanism[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2002, 152 (1/2/3): 267- 273.
|
52 |
Wiszniowski J , Robert D , Surmacz-Gorska J , et al. Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments:Influence of inorganic salts[J]. Applied Catalysis B:Environmental, 2004, 53 (2): 127- 137.
doi: 10.1016/j.apcatb.2004.04.017
|
53 |
Behnajady M A , Modirshahla N , Hamzavi R . Kinetic study on photocatalytic degradation of C[J]. J. Hazard. Mater., 2006, 133 (1/2/3): 226- 232.
|
54 |
Oskoei V , Dehghani M H , Nazmara S , et al. Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption[J]. Journal of Molecular Liquids, 2016, 213, 374- 380.
doi: 10.1016/j.molliq.2015.07.052
|
55 |
Li Zhijun , Yang Qi , Zhong Yu , et al. Granular activated carbon supported iron as a heterogeneous persulfate catalyst for the pretreatment of mature landfill leachate[J]. RSC Advances., 2016, 6 (2): 987- 994.
doi: 10.1039/C5RA21781D
|
56 |
Kim Y B , Ahn J H . Changes of absorption spectra, SUVA254, and color in treating landfill leachate using microwave-assisted persulfate oxidation[J]. Korean Journal of Chemical Engineering, 2017, 34 (7): 1980- 1984.
doi: 10.1007/s11814-017-0104-3
|
57 |
Wu Yanyu , Zhou Shaoqi , Ye Xiuya , et al. Transformation of pollutants in landfill leachate treated by a combined sequence batch reactor, coagulation, Fenton oxidation and biological aerated filter technology[J]. Process Safety and Environmental Protection, 2011, 89 (2): 112- 120.
doi: 10.1016/j.psep.2010.10.005
|
58 |
Zhai Yunbo , Zhu Luo , Zhu Yun , et al. Simultaneous total organic carbon and humic acid removals for landfill leachate using subcritical water catalytic oxidation based on response surface methodology[J]. Water, Air, & Soil Pollution, 2016, 227 (8): 1- 13.
|
59 |
Rivas F J , Beltran F J , Carvalho F , et al. Oxone-promoted wet air oxidation of landfill leachates[J]. Industrial & Engineering Chemistry Research, 2005, 44 (4): 749- 758.
|
60 |
Wang Peng , Zeng Guangming , Peng Yanrong , et al. 2, 4, 6-Trichlorophenol-promoted catalytic wet oxidation of humic substances and stabilized landfill leachate[J]. Chemical Engineering Journal, 2014, 247, 216- 222.
doi: 10.1016/j.cej.2014.03.014
|
61 |
Driskill N M , Novak J T , Goldsmith C D . Hydrophobicity distribution of landfill leachates and evaluation of organic constituents that affect publicly owned treatment works[J]. Journal of Environmental Engineering, 2015, 141 (4): 1- 7.
|
62 |
Renou S , Givaudan J G , Poulain S , et al. Landfill leachate treatment:Review and opportunity[J]. J. Hazard. Mater., 2008, 150 (3): 468- 493.
doi: 10.1016/j.jhazmat.2007.09.077
|
63 |
Jouraiphy A , Amir S , El Gharous M , et al. Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste[J]. International Biodeterioration & Biodegradation, 2005, 56 (2): 101- 108.
|
64 |
Westerhoff P , Pinney M . Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater[J]. Waste Management, 2000, 20 (1): 75- 83.
doi: 10.1016/S0956-053X(99)00277-9
|
65 |
Zhao R , Jung C , Trzopek A , et al. Characterization of ultraviolet-quenching dissolved organic matter(DOM) in mature and young leachates before and after biological pre-treatment[J]. Environmental Science:Water Research & Technology, 2018, 4 (5): 731- 738.
|
66 |
Bu Lin , Wang Kun , Zhao Qingliang , et al. Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series[J]. J. Hazard. Mater., 2010, 179 (1/2/3): 1096- 1105.
|
67 |
Caroline Baettker E , Kozak C , Knapik H G , et al. Applicability of conventional and non-conventional parameters for municipal landfill leachate characterization[J]. Chemosphere, 2020, 251, 126414.
doi: 10.1016/j.chemosphere.2020.126414
|
68 |
Pathak A , Pruden A , Novak J T . Two-stage Anaerobic Membrane Bioreactor(AnMBR) system to reduce UV absorbance in landfill leachates[J]. Bioresour. Technol., 2018, 251, 135- 142.
doi: 10.1016/j.biortech.2017.12.050
|
69 |
Liang Zhu , Liu Junxin , Li Jing . Decomposition and mineralization of aquatic humic substances(AHS) in treating landfill leachate using the Anammox process[J]. Chemosphere, 2009, 74 (10): 1315- 1320.
doi: 10.1016/j.chemosphere.2008.11.073
|
70 |
Zhou J L , Banks C J . Mechanism of humic-acid color removal from natural-waters by fungal biomass biosorption[J]. Chemosphere, 1993, 27 (4): 607- 620.
doi: 10.1016/0045-6535(93)90096-N
|
71 |
Esparza-Soto M , Westerhoff P . Biosorption of humic and fulvic acids to live activated sludge biomass[J]. Water Research, 2003, 37 (10): 2301- 2310.
doi: 10.1016/S0043-1354(02)00630-9
|
72 |
Feng Huajun , Hu Lifang , Mahmood Q , et al. Study on biosorption of humic acid by activated sludge[J]. Biochemical Engineering Journal, 2008, 39 (3): 478- 485.
doi: 10.1016/j.bej.2007.11.004
|
73 |
Wang Dong , Hu Qingyuan , Li Meng , et al. Evaluating the removal of organic fraction of commingled chemical industrial wastewater by activated sludge process augmented with powdered activated carbon[J]. Arabian Journal of Chemistry, 2016, 9, S1951- S1961.
doi: 10.1016/j.arabjc.2015.08.031
|
74 |
Wang Guangzhi , Huang Likun , Xia Zhi . Study of membrane fouling properties of landfill leachate treatment by the SBAC-MBR process[J]. Environmental Engineering Science, 2016, 33 (12): 978- 985.
doi: 10.1089/ees.2015.0550
|
75 |
Chen Weiming , Zhuo Xiaocun , He Chen , et al. Molecular investigation into the transformation of dissolved organic matter in mature landfill leachate during treatment in a combined membrane bioreactorreverse osmosis process[J]. J. Hazard. Mater., 2020, 397, 122759.
doi: 10.1016/j.jhazmat.2020.122759
|
76 |
Iskander S M , Zou Shiqiang , Brazil B , et al. Energy consumption by forward osmosis treatment of landfill leachate for water recovery[J]. Waste Manag., 2017, 63, 284- 291.
doi: 10.1016/j.wasman.2017.03.026
|
77 |
Amaral M C , Pereira H V , Nani E , et al. Treatment of landfill leachate by hybrid precipitation/microfiltration/nanofiltration process[J]. Water Sci. Technol., 2015, 72 (2): 269- 276.
doi: 10.2166/wst.2015.218
|
78 |
Ye Wenyuan , Liu Hongwei , Jiang Mei , et al. Sustainable management of landfill leachate concentrate through recovering humic substance as liquid fertilizer by loose nanofiltration[J]. Water Res., 2019, 157, 555- 563.
doi: 10.1016/j.watres.2019.02.060
|
79 |
Zolfaghari M , Drogui P , Brar S K , et al. Unwanted metals and hydrophobic contaminants in bioreactor effluents are associated with the presence of humic substances[J]. Environmental Chemistry Letters, 2016, 15 (3): 489- 494.
|
80 |
Gao Kuo , Li Tian , Liu Junxia , et al. Ultrafiltration membrane fouling performance by mixtures with micromolecular and macromolecular organics[J]. Environmental Science:Water Research & Technology, 2019, 5 (2): 277- 286.
|
81 |
Tang C Y , Kwon Y N , Leckie J O . Fouling of reverse osmosis and nanofiltration membranes by humic acid-Effects of solution composition and hydrodynamic conditions[J]. Journal of Membrane Science, 2007, 290 (1/2): 86- 94.
|
82 |
Sir M , Podhola M , Patocka T , et al. The effect of humic acids on the reverse osmosis treatment of hazardous landfill leachate[J]. J. Hazard. Mater., 2012, 207/208, 86- 90.
doi: 10.1016/j.jhazmat.2011.08.079
|
83 |
Galvao R B , da Silva Moretti A A , Fernandes F , et al. Post-treatment of stabilized landfill leachate by upflow gravel filtration and granular activated carbon adsorption[J]. Environ. Technol., 2020, 1- 7.
|
84 |
Ferraz F M , Yuan Qiuyan . Organic matter removal from landfill leachate by adsorption using spent coffee grounds activated carbon[J]. Sustainable Materials and Technologies, 2020, 23, 1- 6.
|
85 |
Deng Yang , Jung C , Zhao Renzun , et al. Adsorption of UV-quenching substances(UVQS) from landfill leachate with activated carbon[J]. Chemical Engineering Journal, 2018, 350, 739- 746.
doi: 10.1016/j.cej.2018.04.056
|
86 |
Xiong Jianyin , Zhang Chen , Yang Xiaoying , et al. Combining chemical coagulation with activated coke adsorption to remove organic matters and retain nitrogen compounds in mature landfill leachate[J]. Environ. Technol., 2020, 1- 9.
|
87 |
Aftab B , Hur J . Unraveling complex removal behavior of landfill leachate upon the treatments of Fenton oxidation and MIEX((R)) via two-dimensional correlation size exclusion chromatography(2D-CoSEC)[J]. J. Hazard. Mater., 2019, 362, 36- 44.
doi: 10.1016/j.jhazmat.2018.09.017
|
88 |
Akinpelu A A , Ali M E , Johan M R , et al. Polycyclic aromatic hydrocarbons extraction and removal from wastewater by carbon nanotubes:A review of the current technologies, challenges and prospects[J]. Process Safety and Environmental Protection, 2019, 122, 68- 82.
doi: 10.1016/j.psep.2018.11.006
|
89 |
Ateia M , Apul O G , Shimizu Y , et al. Elucidating adsorptive fractions of natural organic matter on carbon nanotubes[J]. Environ. Sci. Technol., 2017, 51 (12): 7101- 7110.
doi: 10.1021/acs.est.7b01279
|