| 1 | Margallo M ,  Ziegler-Rodriguez K ,  Vazquez-Rowe I , et al.  Enhancing waste management strategies in Latin America under a holistic environmental assessment perspective:A review for policy support[J]. Sci. Total Environ., 2019, 689, 1255- 1275. doi: 10.1016/j.scitotenv.2019.06.393
 | 
																													
																						| 2 | Yan Hong ,  Cousins I T ,  Zhang Chaojie , et al.  Perfluoroalkyl acids in municipal landfill leachates from China:Occurrence, fate during leachate treatment and potential impact on groundwater[J]. Sci. Total Environ., 2015, 524/525, 23- 31. doi: 10.1016/j.scitotenv.2015.03.111
 | 
																													
																						| 3 | Wang Huawei ,  Wang Yanan ,  Li Xiaoyue , et al.  Removal of humic substances from reverse osmosis(RO) and nanofiltration(NF) concentrated leachate using continuously ozone generation-reaction treatment equipment[J]. Waste Manag., 2016, 56, 271- 279. doi: 10.1016/j.wasman.2016.07.040
 | 
																													
																						| 4 | Chai Xiaoli ,  Hao Yongxia ,  Liu Guixiang , et al.  Spectroscopic studies of the effect of aerobic conditions on the chemical characteristics of humic acid in landfill leachate and its implication for the environment[J]. Chemosphere, 2013, 91 (7): 1058- 1063. doi: 10.1016/j.chemosphere.2013.01.052
 | 
																													
																						| 5 | Comstock S E ,  Boyer T H ,  Graf K C , et al.  Effect of landfill characteristics on leachate organic matter properties and coagulation treatability[J]. Chemosphere, 2010, 81 (7): 976- 983. doi: 10.1016/j.chemosphere.2010.07.030
 | 
																													
																						| 6 | 陆景波, 王丹, 邓俊平, 等.  我国垃圾渗滤液处理现状及发展方向[J]. 中国标准化, 2018, (16): 235- 236. doi: 10.3969/j.issn.1002-5944.2018.16.127
 | 
																													
																						| 7 | Gupta A ,  Zhao R ,  Novak J T , et al.  Application of Fenton's reagent as a polishing step for removal of UV quenching organic constituents in biologically treated landfill leachates[J]. Chemosphere, 2014, 105, 82- 86. doi: 10.1016/j.chemosphere.2013.12.066
 | 
																													
																						| 8 | Huo Shouliang ,  Xi Beidou ,  Yu Haichan , et al.  Dissolved organic matter in leachate from different treatment processes[J]. Water and Environment Journal, 2009, 23 (1): 15- 22. doi: 10.1111/j.1747-6593.2007.00104.x
 | 
																													
																						| 9 | Xu Q ,  Siracusa G ,  Di Gregorio S , et al.  COD removal from biologically stabilized landfill leachate using Advanced Oxidation Processes (AOPs)[J]. Process Safety and Environmental Protection, 2018, 120, 278- 285. doi: 10.1016/j.psep.2018.09.014
 | 
																													
																						| 10 | Bolyard S C ,  Reinhart D R .  Evaluation of leachate dissolved organic nitrogen discharge effect on wastewater effluent quality[J]. Waste Manag., 2017, 65, 47- 53. doi: 10.1016/j.wasman.2017.03.025
 | 
																													
																						| 11 | Zhao Renzun ,  Novak J T ,  Goldsmith C D .  Evaluation of on-site biological treatment for landfill leachates and its impact:A size distribution study[J]. Water Res., 2012, 46 (12): 3837- 3848. doi: 10.1016/j.watres.2012.04.022
 | 
																													
																						| 12 | Zhao Renzun ,  Gupta A ,  Novak J T , et al.  Characterization and treatment of organic constituents in landfill leachates that influence the UV disinfection in the publicly owned treatment works(POTWs)[J]. J. Hazard. Mater., 2013, 258/259, 1- 9. doi: 10.1016/j.jhazmat.2013.04.026
 | 
																													
																						| 13 | Musikavong C ,  Wattanachira S .  Reduction of dissolved organic matter in terms of DOC, UV254, SUVA and THMFP in industrial estate wastewater treated by stabilization ponds[J]. Environ. Monit. Assess., 2007, 134 (1/2/3): 489- 497. | 
																													
																						| 14 | Bolyard S C ,  Motlagh A M ,  Lozinski D , et al.  Impact of organic matter from leachate discharged to wastewater treatment plants on effluent quality and UV disinfection[J]. Waste Manag., 2019, 88, 257- 267. doi: 10.1016/j.wasman.2019.03.036
 | 
																													
																						| 15 | Liu Jinlin ,  Li Xiaoyan ,  Xie Yuefeng , et al.  Characterization of soluble microbial products as precursors of disinfection byproducts in drinking water supply[J]. Sci. Total Environ., 2014, 472, 818- 824. doi: 10.1016/j.scitotenv.2013.11.139
 | 
																													
																						| 16 | Gao Zechen ,  Lin Yili ,  Xu Bin , et al.  Effect of UV wavelength on humic acid degradation and disinfection by-product formation during the UV/chlorine process[J]. Water Res., 2019, 154, 199- 209. doi: 10.1016/j.watres.2019.02.004
 | 
																													
																						| 17 | Xu Juan ,  Yu Hanqing ,  Sheng Guoping .  Kinetics and thermodynamics of interaction between sulfonamide antibiotics and humic acids:Surface plasmon resonance and isothermal titration microcalorimetry analysis[J]. J. Hazard. Mater., 2016, 302, 262- 266. doi: 10.1016/j.jhazmat.2015.09.058
 | 
																													
																						| 18 | Jones M N ,  Bryan N D .  Colloidal properties of humic substances[J]. Advances in Colloid and Interface Science, 1998, 78 (1): 1- 48. doi: 10.1016/S0001-8686(98)00058-X
 | 
																													
																						| 19 | 王书明, 崔俊涛, 李筱茵, 等.  微生物对垃圾渗滤液中胡敏酸降解和形成的影响[J]. 科技视界, 2016, (7): 86- 87. doi: 10.3969/j.issn.2095-2457.2016.07.056
 | 
																													
																						| 20 | Castagnoli O ,  Musmeci L ,  Zavattiero E , et al.  Humic substances and humification rate in a municipal refuse disposed of in a landfill[J]. Water Air and Soil Pollution, 1990, 53 (1/2): 1- 12. | 
																													
																						| 21 | Nanny M A ,  Ratasuk N .  Characterization and comparison of hydrophobic neutral and hydrophobic acid dissolved organic carbon isolated from three municipal landfill leachates[J]. Water Research, 2002, 36 (6): 1572- 1584. doi: 10.1016/S0043-1354(01)00359-1
 | 
																													
																						| 22 | Kang K H ,  Shin H S ,  Park H .  Characterization of humic substances present in landfill leachates with different landfill ages and its implications[J]. Water Research, 2002, 36 (16): 4023- 4032. doi: 10.1016/S0043-1354(02)00114-8
 | 
																													
																						| 23 | Gupta A ,  Zhao R ,  Novak J T , et al.  Variation in organic matter characteristics of landfill leachates in different stabilisation stages[J]. Waste. Manag. Res., 2014, 32 (12): 1192- 1199. doi: 10.1177/0734242X14550739
 | 
																													
																						| 24 | Zhang Qiqi ,  Tian Baohu ,  Zhang Xuan , et al.  Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants[J]. Waste Management, 2013, 33 (11): 2277- 2286. doi: 10.1016/j.wasman.2013.07.021
 | 
																													
																						| 25 | Zhang Long ,  Li Aimin ,  Lu Yufei , et al.  Characterization and removal of dissolved organic matter(DOM) from landfill leachate rejected by nanofiltration[J]. Waste Management, 2009, 29 (3): 1035- 1040. doi: 10.1016/j.wasman.2008.08.020
 | 
																													
																						| 26 | Christensen J B ,  Jensen D L ,  Gron C , et al.  Characterization of the dissolved organic carbon in landfill leachate-polluted groundwater[J]. Water Research, 1998, 32 (1): 125- 135. doi: 10.1016/S0043-1354(97)00202-9
 | 
																													
																						| 27 | Qi Guangxia ,  Yue Dongbei ,  Nie Yongfeng .  Characterization of humic substances in bio-treated municipal solid waste landfill leachate[J]. Frontiers of Environmental Science & Engineering, 2012, 6 (5): 711- 716. | 
																													
																						| 28 | Iskander S M ,  Novak J T ,  Brazil B , et al.  Percarbonate oxidation of landfill leachates towards removal of ultraviolet quenchers[J]. Environmental Science-Water Research & Technology, 2017, 3 (6): 1162- 1170. | 
																													
																						| 29 | Weishaar J L ,  Aiken G R ,  Bergamaschi B A , et al.  Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon[J]. Environmental Science & Technology, 2003, 37 (20): 4702- 4708. | 
																													
																						| 30 | Croue J P .  Isolation of humic and non-humic NOM fractions:Structural characterization[J]. Environmental Monitoring and Assessment, 2004, 92 (1/2/3): 193- 207. | 
																													
																						| 31 | Baccot C ,  Pallier V ,  Feuillade-Cathalifaud G .  Biochemical methane potential of fractions of organic matter extracted from a municipal solid waste leachate:Impact of their hydrophobic character[J]. Waste Management, 2017, 63, 257- 266. doi: 10.1016/j.wasman.2016.11.025
 | 
																													
																						| 32 | Amaral-Silva N ,  Martins R C ,  Castro-Silva S , et al.  Ozonation and perozonation on the biodegradability improvement of a landfill leachate[J]. Journal of Environmental Chemical Engineering, 2016, 4 (1): 527- 533. doi: 10.1016/j.jece.2015.12.002
 | 
																													
																						| 33 | Chys M ,  Oloibiri V A ,  Audenaert W T M , et al.  Ozonation of biologically treated landfill leachate:Efficiency and insights in organic conversions[J]. Chemical Engineering Journal, 2015, 277, 104- 111. doi: 10.1016/j.cej.2015.04.099
 | 
																													
																						| 34 | Chen Weiming ,  Li Qibin .  Elimination of UV-quenching substances from MBR- and SAARB-treated mature landfill leachates in an ozonation process:A comparative study[J]. Chemosphere, 2020, 242, 1- 10. | 
																													
																						| 35 | Jung C ,  Deng Yang ,  Zhao Renzun , et al.  Chemical oxidation for mitigation of UV-quenching substances(UVQS) from municipal landfill leachate:Fenton process versus ozonation[J]. Water Res., 2017, 108, 260- 270. doi: 10.1016/j.watres.2016.11.005
 | 
																													
																						| 36 | Fernandes A ,  Spranger P ,  Fonseca A D , et al.  Effect of electrochemical treatments on the biodegradability of sanitary landfill leachates[J]. Applied Catalysis B:Environmental, 2014, 144, 514- 520. doi: 10.1016/j.apcatb.2013.07.054
 | 
																													
																						| 37 | Moreira F C ,  Soler J ,  Fonseca A , et al.  Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate[J]. Water Res., 2015, 81, 375- 387. doi: 10.1016/j.watres.2015.05.036
 | 
																													
																						| 38 | Song Peipei ,  Yang Zhaohui ,  Zeng Guangming , et al.  Electrocoagulation treatment of arsenic in wastewaters:A comprehensive review[J]. Chemical Engineering Journal, 2017, 317, 707- 725. doi: 10.1016/j.cej.2017.02.086
 | 
																													
																						| 39 | Martínez-Huitle C A ,  Panizza M .  Electrochemical oxidation of organic pollutants for wastewater treatment[J]. Current Opinion in Electrochemistry, 2018, 11, 62- 71. doi: 10.1016/j.coelec.2018.07.010
 | 
																													
																						| 40 | Anastasiou E ,  Lorentz K O ,  Stein G J , et al.  Prehistoric schistosomiasis parasite found in the Middle East[J]. The Lancet Infectious Diseases, 2014, 14 (7): 553- 554. doi: 10.1016/S1473-3099(14)70794-7
 | 
																													
																						| 41 | Pulkka S ,  Martikainen M ,  Bhatnagar A , et al.  Electrochemical methods for the removal of anionic contaminants from water-A review[J]. Separation and Purification Technology, 2014, 132, 252- 271. doi: 10.1016/j.seppur.2014.05.021
 | 
																													
																						| 42 | Liu Xingjian ,  Novak J T ,  He Zhen .  Removal of landfill leachate ultraviolet quenching substances by electricity induced humic acid precipitation and electrooxidation in a membrane electrochemical reactor[J]. Sci. Total Environ., 2019, 689, 571- 579. doi: 10.1016/j.scitotenv.2019.06.329
 | 
																													
																						| 43 | Urtiaga A ,  Rueda A ,  Anglada A , et al.  Integrated treatment of landfill leachates including electrooxidation at pilot plant scale[J]. J. Hazard. Mater., 2009, 166 (2/3): 1530- 1534. | 
																													
																						| 44 | Zhang Cheng ,  Liu Jianyong ,  Yang Xiaojian , et al.  Degradation of refractory organics in biotreated landfill leachate using high voltage pulsed discharge combined with TiO2[J]. J. Hazard. Mater., 2017, 326, 221- 228. doi: 10.1016/j.jhazmat.2016.12.034
 | 
																													
																						| 45 | Iskander S M ,  Brazil B ,  Novak J T , et al.  Resource recovery from landfill leachate using bioelectrochemical systems:Opportunities, challenges, and perspectives[J]. Bioresour. Technol., 2016, 201, 347- 354. doi: 10.1016/j.biortech.2015.11.051
 | 
																													
																						| 46 | Iskander S M ,  Novak J T ,  Brazil B , et al.  Simultaneous energy generation and UV quencher removal from landfill leachate using a microbial fuel cell[J]. Environ. Sci. Pollut. Res. Int., 2017, 24 (33): 26040- 26048. doi: 10.1007/s11356-017-0231-8
 | 
																													
																						| 47 | Oulego P ,  Collado S ,  Laca A , et al.  Impact of leachate composition on the advanced oxidation treatment[J]. Water Res., 2016, 88, 389- 402. doi: 10.1016/j.watres.2015.09.048
 | 
																													
																						| 48 | Hermosilla D ,  Cortijo M ,  Huang C P .  Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes[J]. Sci. Total Environ., 2009, 407, 3473- 3481. doi: 10.1016/j.scitotenv.2009.02.009
 | 
																													
																						| 49 | Pignatello J J ,  Oliveros E ,  MacKay A .  Advanced oxidation processes for organic contaminant destruction based on the fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36 (1): 1- 84. doi: 10.1080/10643380500326564
 | 
																													
																						| 50 | Qiang Zhimin ,  Chang J H ,  Huang C P .  Electrochemical regeneration of Fe2+ in Fenton oxidation processes[J]. Water Research, 2003, 37 (6): 1308- 1319. doi: 10.1016/S0043-1354(02)00461-X
 | 
																													
																						| 51 | Wiszniowski J ,  Robert D ,  Surmacz-Gorska J , et al.  Photocatalytic decomposition of humic acids on TiO2 Part I:Discussion of adsorption and mechanism[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2002, 152 (1/2/3): 267- 273. | 
																													
																						| 52 | Wiszniowski J ,  Robert D ,  Surmacz-Gorska J , et al.  Solar photocatalytic degradation of humic acids as a model of organic compounds of landfill leachate in pilot-plant experiments:Influence of inorganic salts[J]. Applied Catalysis B:Environmental, 2004, 53 (2): 127- 137. doi: 10.1016/j.apcatb.2004.04.017
 | 
																													
																						| 53 | Behnajady M A ,  Modirshahla N ,  Hamzavi R .  Kinetic study on photocatalytic degradation of C[J]. J. Hazard. Mater., 2006, 133 (1/2/3): 226- 232. | 
																													
																						| 54 | Oskoei V ,  Dehghani M H ,  Nazmara S , et al.  Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption[J]. Journal of Molecular Liquids, 2016, 213, 374- 380. doi: 10.1016/j.molliq.2015.07.052
 | 
																													
																						| 55 | Li Zhijun ,  Yang Qi ,  Zhong Yu , et al.  Granular activated carbon supported iron as a heterogeneous persulfate catalyst for the pretreatment of mature landfill leachate[J]. RSC Advances., 2016, 6 (2): 987- 994. doi: 10.1039/C5RA21781D
 | 
																													
																						| 56 | Kim Y B ,  Ahn J H .  Changes of absorption spectra, SUVA254, and color in treating landfill leachate using microwave-assisted persulfate oxidation[J]. Korean Journal of Chemical Engineering, 2017, 34 (7): 1980- 1984. doi: 10.1007/s11814-017-0104-3
 | 
																													
																						| 57 | Wu Yanyu ,  Zhou Shaoqi ,  Ye Xiuya , et al.  Transformation of pollutants in landfill leachate treated by a combined sequence batch reactor, coagulation, Fenton oxidation and biological aerated filter technology[J]. Process Safety and Environmental Protection, 2011, 89 (2): 112- 120. doi: 10.1016/j.psep.2010.10.005
 | 
																													
																						| 58 | Zhai Yunbo ,  Zhu Luo ,  Zhu Yun , et al.  Simultaneous total organic carbon and humic acid removals for landfill leachate using subcritical water catalytic oxidation based on response surface methodology[J]. Water, Air, & Soil Pollution, 2016, 227 (8): 1- 13. | 
																													
																						| 59 | Rivas F J ,  Beltran F J ,  Carvalho F , et al.  Oxone-promoted wet air oxidation of landfill leachates[J]. Industrial & Engineering Chemistry Research, 2005, 44 (4): 749- 758. | 
																													
																						| 60 | Wang Peng ,  Zeng Guangming ,  Peng Yanrong , et al.  2, 4, 6-Trichlorophenol-promoted catalytic wet oxidation of humic substances and stabilized landfill leachate[J]. Chemical Engineering Journal, 2014, 247, 216- 222. doi: 10.1016/j.cej.2014.03.014
 | 
																													
																						| 61 | Driskill N M ,  Novak J T ,  Goldsmith C D .  Hydrophobicity distribution of landfill leachates and evaluation of organic constituents that affect publicly owned treatment works[J]. Journal of Environmental Engineering, 2015, 141 (4): 1- 7. | 
																													
																						| 62 | Renou S ,  Givaudan J G ,  Poulain S , et al.  Landfill leachate treatment:Review and opportunity[J]. J. Hazard. Mater., 2008, 150 (3): 468- 493. doi: 10.1016/j.jhazmat.2007.09.077
 | 
																													
																						| 63 | Jouraiphy A ,  Amir S ,  El Gharous M , et al.  Chemical and spectroscopic analysis of organic matter transformation during composting of sewage sludge and green plant waste[J]. International Biodeterioration & Biodegradation, 2005, 56 (2): 101- 108. | 
																													
																						| 64 | Westerhoff P ,  Pinney M .  Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater[J]. Waste Management, 2000, 20 (1): 75- 83. doi: 10.1016/S0956-053X(99)00277-9
 | 
																													
																						| 65 | Zhao R ,  Jung C ,  Trzopek A , et al.  Characterization of ultraviolet-quenching dissolved organic matter(DOM) in mature and young leachates before and after biological pre-treatment[J]. Environmental Science:Water Research & Technology, 2018, 4 (5): 731- 738. | 
																													
																						| 66 | Bu Lin ,  Wang Kun ,  Zhao Qingliang , et al.  Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series[J]. J. Hazard. Mater., 2010, 179 (1/2/3): 1096- 1105. | 
																													
																						| 67 | Caroline Baettker E ,  Kozak C ,  Knapik H G , et al.  Applicability of conventional and non-conventional parameters for municipal landfill leachate characterization[J]. Chemosphere, 2020, 251, 126414. doi: 10.1016/j.chemosphere.2020.126414
 | 
																													
																						| 68 | Pathak A ,  Pruden A ,  Novak J T .  Two-stage Anaerobic Membrane Bioreactor(AnMBR) system to reduce UV absorbance in landfill leachates[J]. Bioresour. Technol., 2018, 251, 135- 142. doi: 10.1016/j.biortech.2017.12.050
 | 
																													
																						| 69 | Liang Zhu ,  Liu Junxin ,  Li Jing .  Decomposition and mineralization of aquatic humic substances(AHS) in treating landfill leachate using the Anammox process[J]. Chemosphere, 2009, 74 (10): 1315- 1320. doi: 10.1016/j.chemosphere.2008.11.073
 | 
																													
																						| 70 | Zhou J L ,  Banks C J .  Mechanism of humic-acid color removal from natural-waters by fungal biomass biosorption[J]. Chemosphere, 1993, 27 (4): 607- 620. doi: 10.1016/0045-6535(93)90096-N
 | 
																													
																						| 71 | Esparza-Soto M ,  Westerhoff P .  Biosorption of humic and fulvic acids to live activated sludge biomass[J]. Water Research, 2003, 37 (10): 2301- 2310. doi: 10.1016/S0043-1354(02)00630-9
 | 
																													
																						| 72 | Feng Huajun ,  Hu Lifang ,  Mahmood Q , et al.  Study on biosorption of humic acid by activated sludge[J]. Biochemical Engineering Journal, 2008, 39 (3): 478- 485. doi: 10.1016/j.bej.2007.11.004
 | 
																													
																						| 73 | Wang Dong ,  Hu Qingyuan ,  Li Meng , et al.  Evaluating the removal of organic fraction of commingled chemical industrial wastewater by activated sludge process augmented with powdered activated carbon[J]. Arabian Journal of Chemistry, 2016, 9, S1951- S1961. doi: 10.1016/j.arabjc.2015.08.031
 | 
																													
																						| 74 | Wang Guangzhi ,  Huang Likun ,  Xia Zhi .  Study of membrane fouling properties of landfill leachate treatment by the SBAC-MBR process[J]. Environmental Engineering Science, 2016, 33 (12): 978- 985. doi: 10.1089/ees.2015.0550
 | 
																													
																						| 75 | Chen Weiming ,  Zhuo Xiaocun ,  He Chen , et al.  Molecular investigation into the transformation of dissolved organic matter in mature landfill leachate during treatment in a combined membrane bioreactorreverse osmosis process[J]. J. Hazard. Mater., 2020, 397, 122759. doi: 10.1016/j.jhazmat.2020.122759
 | 
																													
																						| 76 | Iskander S M ,  Zou Shiqiang ,  Brazil B , et al.  Energy consumption by forward osmosis treatment of landfill leachate for water recovery[J]. Waste Manag., 2017, 63, 284- 291. doi: 10.1016/j.wasman.2017.03.026
 | 
																													
																						| 77 | Amaral M C ,  Pereira H V ,  Nani E , et al.  Treatment of landfill leachate by hybrid precipitation/microfiltration/nanofiltration process[J]. Water Sci. Technol., 2015, 72 (2): 269- 276. doi: 10.2166/wst.2015.218
 | 
																													
																						| 78 | Ye Wenyuan ,  Liu Hongwei ,  Jiang Mei , et al.  Sustainable management of landfill leachate concentrate through recovering humic substance as liquid fertilizer by loose nanofiltration[J]. Water Res., 2019, 157, 555- 563. doi: 10.1016/j.watres.2019.02.060
 | 
																													
																						| 79 | Zolfaghari M ,  Drogui P ,  Brar S K , et al.  Unwanted metals and hydrophobic contaminants in bioreactor effluents are associated with the presence of humic substances[J]. Environmental Chemistry Letters, 2016, 15 (3): 489- 494. | 
																													
																						| 80 | Gao Kuo ,  Li Tian ,  Liu Junxia , et al.  Ultrafiltration membrane fouling performance by mixtures with micromolecular and macromolecular organics[J]. Environmental Science:Water Research & Technology, 2019, 5 (2): 277- 286. | 
																													
																						| 81 | Tang C Y ,  Kwon Y N ,  Leckie J O .  Fouling of reverse osmosis and nanofiltration membranes by humic acid-Effects of solution composition and hydrodynamic conditions[J]. Journal of Membrane Science, 2007, 290 (1/2): 86- 94. | 
																													
																						| 82 | Sir M ,  Podhola M ,  Patocka T , et al.  The effect of humic acids on the reverse osmosis treatment of hazardous landfill leachate[J]. J. Hazard. Mater., 2012, 207/208, 86- 90. doi: 10.1016/j.jhazmat.2011.08.079
 | 
																													
																						| 83 | Galvao R B ,  da Silva Moretti A A ,  Fernandes F , et al.  Post-treatment of stabilized landfill leachate by upflow gravel filtration and granular activated carbon adsorption[J]. Environ. Technol., 2020, 1- 7. | 
																													
																						| 84 | Ferraz F M ,  Yuan Qiuyan .  Organic matter removal from landfill leachate by adsorption using spent coffee grounds activated carbon[J]. Sustainable Materials and Technologies, 2020, 23, 1- 6. | 
																													
																						| 85 | Deng Yang ,  Jung C ,  Zhao Renzun , et al.  Adsorption of UV-quenching substances(UVQS) from landfill leachate with activated carbon[J]. Chemical Engineering Journal, 2018, 350, 739- 746. doi: 10.1016/j.cej.2018.04.056
 | 
																													
																						| 86 | Xiong Jianyin ,  Zhang Chen ,  Yang Xiaoying , et al.  Combining chemical coagulation with activated coke adsorption to remove organic matters and retain nitrogen compounds in mature landfill leachate[J]. Environ. Technol., 2020, 1- 9. | 
																													
																						| 87 | Aftab B ,  Hur J .  Unraveling complex removal behavior of landfill leachate upon the treatments of Fenton oxidation and MIEX((R)) via two-dimensional correlation size exclusion chromatography(2D-CoSEC)[J]. J. Hazard. Mater., 2019, 362, 36- 44. doi: 10.1016/j.jhazmat.2018.09.017
 | 
																													
																						| 88 | Akinpelu A A ,  Ali M E ,  Johan M R , et al.  Polycyclic aromatic hydrocarbons extraction and removal from wastewater by carbon nanotubes:A review of the current technologies, challenges and prospects[J]. Process Safety and Environmental Protection, 2019, 122, 68- 82. doi: 10.1016/j.psep.2018.11.006
 | 
																													
																						| 89 | Ateia M ,  Apul O G ,  Shimizu Y , et al.  Elucidating adsorptive fractions of natural organic matter on carbon nanotubes[J]. Environ. Sci. Technol., 2017, 51 (12): 7101- 7110. doi: 10.1021/acs.est.7b01279
 |