1 |
DROUICHE M, MIGNOT V L, LOUNICI H,et al. A compact process for the treatment of olive mill wastewater by combining UF and UV/H 2O 2 techniques[J]. Desalination, 2004, 169(1):81-88. doi: 10.1016/j.desal.2004.08.009
|
2 |
DWYER J, LANT P. Biodegradability of DOC and DON for UV/H 2O 2 pre-treated melanoidin based wastewater[J]. Biochemical Engineering Journal, 2008, 42(1):47-54. doi: 10.1016/j.bej.2008.05.016
|
3 |
GLAZE W H,LAY Y, KANG J W. Advanced oxidation processes. A kinetic model for the oxidation of 1,2-dibromo-3-chloropropane in water by the combination of hydrogen peroxide and UV radiation[J]. Industrial & Engineering Chemistry Research, 1995, 34(7):2314-2323. doi: 10.1021/ie00046a013
|
4 |
GUO Kaiheng, WU Zihao, YAN Shuwen,et al. Comparison of the UV/chlorine and UV/H 2O 2 processes in the degradation of PPCPs in simulated drinking water and wastewater:Kinetics,radical mechanism and energy requirements[J]. Water Research, 2018, 147:184-194. doi: 10.1016/j.watres.2018.08.048
|
5 |
ZHU Shishu, LI Xiaojie, KANG Jian,et al. Persulfate activation on crystallographic manganese oxides:Mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants[J]. Environmental Science & Technology, 2019, 53(1):307-315. doi: 10.1021/acs.est.8b04669
|
6 |
TAKAYANAGI T, KIMIYA H, OHYAMA T. Formation of artifactual DMPO-OH spin adduct in acid solutions containing nitrite ions[J]. Free Radical Research, 2017, 51(7/8):739-748. doi: 10.1080/10715762.2017.1369536
|
7 |
PEYTON G R. Guidelines for the selection of a chemical model for advanced oxidation processes[J]. Water Quality Research Journal of Canada, 1992, 27(1):43-56. doi: 10.2166/wqrj.1992.003
|
8 |
CRITTENDEN J C, HU Shumin, HAND D W,et al. A kinetic model for H 2O 2/UV process in a completely mixed batch reactor[J]. Water Research, 1999, 33(10):2315-2328. doi: 10.1016/s0043-1354(98)00448-5
|
9 |
ZHANG Ruochun, SUN Peizhe, BOYER T H,et al. Degradation of pharmaceuticals and metabolite in synthetic human urine by UV,UV/H 2O 2,and UV/PDS[J]. Environmental Science & Technology, 2015, 49(5):3056-3066. doi: 10.1021/es504799n
|
10 |
YANG Yi, PIGNATELLO J J, MA Jun,et al. Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes(AOPs)[J]. Environmental Science & Technology, 2014, 48(4):2344-2351. doi: 10.1021/es404118q
|
11 |
BUXTON G V, GREENSTOCK C L, HELMAN W P,et al. Critical review of rate constants for reactions of hydrated electrons,hydrogen atoms and hydroxyl radicals(·OH/·O -) in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2):513-886. doi: 10.1063/1.555805
|
12 |
KIM I, TANAKA H. Photodegradation characteristics of PPCPs in water with UV treatment[J]. Environment International, 2009, 35(5):793-802. doi: 10.1016/j.envint.2009.01.003
|
13 |
KIM I, YAMASHITA N, TANAKA H. Performance of UV and UV/H 2O 2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan[J]. Journal of Hazardous Materials, 2009, 166(2/3):1134-1140. doi: 10.1016/j.jhazmat.2008.12.020
|
14 |
YAO Hong, SUN Peizhe, MINAKATA D,et al. Kinetics and modeling of degradation of ionophore antibiotics by UV and UV/H 2O 2 [J]. Environmental Science & Technology, 2013, 47(9):4581-4589. doi: 10.1021/es3052685
|
15 |
NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3):1027-1284. doi: 10.1063/1.555808
|
16 |
YU Xiaoying, BAO Zhenchuan, BARKER J R. Free radical reactions involving Cl·,Cl 2 ·-,and SO 4 ·- in the 248 nm photolysis of aqueous solutions containing S 2O 8 2- and Cl - [J]. The Journal of Physical Chemistry A, 2004, 108(2):295-308. doi: 10.1021/jp036211i
|
17 |
XIE Pengchao, MA Jun, LIU Wei,et al. Removal of 2-MIB and geosmin using UV/persulfate:Contributions of hydroxyl and sulfate radicals[J]. Water Research, 2015, 69:223-233. doi: 10.1016/j.watres.2014.11.029
|
18 |
ZHOU Xuefei, LIU Dandan, ZHANG Yalei,et al. Degradation mechanism and kinetic modeling for UV/peroxydisulfate treatment of penicillin antibiotics[J]. Chemical Engineering Journal, 2018, 341:93-101. doi: 10.1016/j.cej.2018.01.137
|
19 |
QIAN Yajie, XUE Gang, CHEN Jiabin,et al. Oxidation of cefalexin by thermally activated persulfate:Kinetics,products,and antibacterial activity change[J]. Journal of Hazardous Materials, 2018, 354:153-160. doi: 10.1016/j.jhazmat.2018.05.004
|
20 |
GUAN Yinghong, MA Jun, LI Xuchun,et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system[J]. Environmental Science & Technology, 2011, 45(21):9308-9314. doi: 10.1021/es2017363
|
21 |
JIN Jing, EL-DIN M G, BOLTON J R. Assessment of the UV/chlorine process as an advanced oxidation process[J]. Water Research, 2011, 45(4):1890-1896. doi: 10.1016/j.watres.2010.12.008
|
22 |
WATTS M J, LINDEN K G. Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water[J]. Water Research, 2007, 41(13):2871-2878. doi: 10.1016/j.watres.2007.03.032
|
23 |
WANG Ding, BOLTON J R, HOFMANN R. Medium pressure UV combined with chlorine advanced oxidation for trichloroethylene destruction in a model water[J]. Water Research, 2012, 46(15):4677-4686. doi: 10.1016/j.watres.2012.06.007
|
24 |
SICHEL C, GARCIA C, ANDRE K. Feasibility studies:UV/chlorine advanced oxidation treatment for the removal of emerging contaminants[J]. Water Research, 2011, 45(19):6371-6380. doi: 10.1016/j.watres.2011.09.025
|
25 |
YANG Wenbo, ZHOU Hongde, CICEK N. Treatment of organic micropollutants in water and wastewater by UV-based processes:A literature review[J]. Critical Reviews in Environmental Science and Technology, 2014, 44(13):1443-1476. doi: 10.1080/10643389.2013.790745
|
26 |
YANG Xin, SUN Jianliang, FU Wenjie,et al. PPCP degradation by UV/chlorine treatment and its impact on DBP formation potential in real waters[J]. Water Research, 2016, 98:309-318. doi: 10.1016/j.watres.2016.04.011
|
27 |
FANG Jingyun, FU Yun, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J]. Environmental Science & Technology, 2014, 48(3):1859-1868. doi: 10.1021/es4036094
|
28 |
ZHANG Weiqiu, ZHOU Shiqing, SUN Julong,et al. Impact of chloride ions on UV/H 2O 2 and UV/persulfate advanced oxidation processes[J]. Environmental Science & Technology, 2018, 52(13):7380-7389. doi: 10.1021/acs.est.8b01662
|
29 |
GREBEL J E, PIGNATELLO J J, MITCH W A. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters[J]. Environmental Science & Technology, 2010, 44(17):6822-6828. doi: 10.1021/es1010225
|
30 |
GUO Kaiheng, WU Zihao, SHANG C,et al. Radical chemistry and structural relationships of PPCP degradation by UV/chlorine treatment in simulated drinking water[J]. Environmental Science & Technology, 2017, 51(18):10431-10439. doi: 10.1021/acs.est.7b02059
|
31 |
WINKER M, TETTENBORN F, FAIKA D,et al. Comparison of analytical and theoretical pharmaceutical concentrations in human urine in Germany[J]. Water Research, 2008, 42(14):3633-3640. doi: 10.1016/j.watres.2008.06.002
|
32 |
ZHANG Ruochun, YANG Yongkui, HUANG C H,et al. Kinetics and modeling of sulfonamide antibiotic degradation in wastewater and human urine by UV/H 2O 2 and UV/PDS[J]. Water Research, 2016, 103:283-292. doi: 10.1016/j.watres.2016.07.037
|
33 |
SUN Peizhe, MENG Tan, WANG Zijian,et al. Degradation of organic micropollutants in UV/NH 2Cl advanced oxidation process[J]. Environmental Science & Technology, 2019, 53(15):9024-9033. doi: 10.1021/acs.est.9b00749
|
34 |
WU Zihao, FANG Jingyun, XIANG Yingying,et al. Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process:Kinetics and transformation pathways[J]. Water Research, 2016, 104:272-282. doi: 10.1016/j.watres.2016.08.011
|
35 |
SUN Peizhe, LEE Wanning, ZHANG Ruochun,et al. Degradation of DEET and caffeine under UV/chlorine and simulated sunlight/chlorine conditions[J]. Environmental Science & Technology, 2016, 50(24):13265-13273. doi: 10.1021/acs.est.6b02287
|
36 |
LUO Jinming, LIU Tongcai, ZHANG Danyu,et al. The individual and co-exposure degradation of benzophenone derivatives by UV/H 2O 2 and UV/PDS in different water matrices[J]. Water Research, 2019, 159:102-110. doi: 10.1016/j.watres.2019.05.019
|
37 |
LI Ke, STEFAN M I, CRITTENDEN J C. Trichloroethene degradation by UV/H 2O 2 advanced oxidation process:Product study and kinetic modeling[J]. Environmental Science & Technology, 2007, 41(5):1696-1703. doi: 10.1021/es0607638
|
38 |
LI Ke, CRITTENDEN J. Computerized pathway elucidation for hydroxyl radical-induced chain reaction mechanisms in aqueous phase advanced oxidation processes[J]. Environmental Science & Technology, 2009, 43(8):2831-2837. doi: 10.1021/es802039y
|
39 |
QIAN Yajie, GUO Xin, ZHANG Yalei,et al. Perfluorooctanoic acid degradation using UV-persulfate process:Modeling of the degradation and chlorate formation[J]. Environmental Science & Technology, 2016, 50(2):772-781. doi: 10.1021/acs.est.5b03715
|
40 |
ZHOU Shiqing, ZHANG Weiqiu, SUN Julong,et al. Oxidation mechanisms of the UV/free chlorine process:Kinetic modeling and quantitative structure activity relationships[J]. Environmental Science & Technology, 2019, 53(8):4335-4345. doi: 10.1021/acs.est.8b06896
|
41 |
ZHOU Shiqing, YU Yanghai, ZHANG Weiqiu,et al. Oxidation of microcystin-LR via activation of peroxymonosulfate using ascorbic acid:Kinetic modeling and toxicity assessment[J]. Environmental Science & Technology, 2018, 52(7):4305-4312. doi: 10.1021/acs.est.7b06560
|
42 |
ZHANG Tianqi, HUANG C H. Modeling the kinetics of UV/peracetic acid advanced oxidation process[J]. Environmental Science & Technology, 2020, 54(12):7579-7590. doi: 10.1021/acs.est.9b06826
|
43 |
WANG Songlin, WU Junfeng, LU Xiuqing,et al. Removal of acetaminophen in the Fe 2+/persulfate system:Kinetic model and degradation pathways[J]. Chemical Engineering Journal, 2019, 358:1091-1100. doi: 10.1016/j.cej.2018.09.145
|
44 |
GUO Xin, MINAKATA D, CRITTENDEN J. On-the-fly kinetic Monte Carlo simulation of aqueous phase advanced oxidation processes[J]. Environmental Science & Technology, 2015, 49(15):9230-9236. doi: 10.1021/acs.est.5b02034
|
45 |
GUO Xin, MINAKATA D, CRITTENDEN J. Computer-based first-principles kinetic Monte Carlo simulation of polyethylene glycol degradation in aqueous phase UV/H 2O 2 advanced oxidation process[J]. Environmental Science & Technology, 2014, 48(18):10813-10820. doi: 10.1021/es5029553
|
46 |
PINTO J H Q, KALIAGUINE S. A Monte Carlo analysis of acid hydrolysis of glycosidic bonds in polysaccharides[J]. AIChE Journal, 1991, 37(6):905-914. doi: 10.1002/aic.690370613
|
47 |
VINU R, LEVINE S E, WANG Lin,et al. Detailed mechanistic modeling of poly(styrene peroxide) pyrolysis using kinetic Monte Carlo simulation[J]. Chemical Engineering Science, 2012, 69(1):456-471. doi: 10.1016/j.ces.2011.10.071
|
48 |
ATKINSON R. Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions[J]. Chemical Reviews, 1986, 86(1):69-201. doi: 10.1021/cr00071a004
|
49 |
KWOK E S C, ATKINSON R. Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship:An update[J]. Atmospheric Environment, 1995, 29(14):1685-1695. doi: 10.1016/1352-2310(95)00069-b
|
50 |
ATKINSON R. A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds[J]. International Journal of Chemical Kinetics, 1987, 19(9):799-828. doi: 10.1002/kin.550190903
|
51 |
BÖHNHARDT A, KÜHNE R, EBERT R U,et al. Indirect photolysis of organic compounds:Prediction of OH reaction rate constants through molecular orbital calculations[J]. The Journal of Physical Chemistry A, 2008, 112(45):11391-11399. doi: 10.1021/jp8052218
|
52 |
KLAMT A. Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds based on molecular orbital calculations[J]. Chemosphere, 1996, 32(4):717-726. doi: 10.1016/0045-6535(95)00352-5
|
53 |
BAKKEN G A, JURS P C. Prediction of hydroxyl radical rate constants from molecular structure[J]. Journal of Chemical Information and Computer Sciences, 1999, 39(6):1064-1075. doi: 10.1021/ci990042a
|
54 |
MINAKATA D, LI Ke, WESTERHOFF P,et al. Development of a group contribution method to predict aqueous phase hydroxyl radical(HO*) reaction rate constants[J]. Environmental Science & Technology, 2009, 43(16):6220-6227. doi: 10.1021/es900956c
|
55 |
MINAKATA D, CRITTENDEN J. Linear free energy relationships between aqueous phase hydroxyl radical reaction rate constants and free energy of activation[J]. Environmental Science & Technology, 2011, 45(8):3479-3486. doi: 10.1021/es1020313
|
56 |
MINAKATA D, SONG Weihua, CRITTENDEN J. Reactivity of aqueous phase hydroxyl radical with halogenated carboxylate anions:Experimental and theoretical studies[J]. Environmental Science & Technology, 2011, 45(14):6057-6065. doi: 10.1021/es200978f
|