1 |
王文龙,吴乾元,杜烨,等. 城市污水再生处理中微量有机污染物控制的关键难题与解决思路[J]. 环境科学,2021,42(6):2573-2582.
|
|
WANG Wenlong, WU Qianyuan, DU Ye,et al. Key problems and novel strategy of controlling emerging trace organic contaminants during municipal wastewater reclamation[J]. Environmental Science,2021,42(6):2573-2582.
|
2 |
AKERDI A G, BAHRAMI S H. Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds:A review[J]. Journal of Environmental Chemical Engineering, 2019, 7(5):103283. doi: 10.1016/j.jece.2019.103283
|
3 |
HUANG Danlian, CHEN Sha, ZENG Guangming,et al. Artificial Z-scheme photocatalytic system:What have been done and where to go?[J]. Coordination Chemistry Reviews, 2019, 385:44-80. doi: 10.1016/j.ccr.2018.12.013
|
4 |
CHANG Xueming, YAO Xiaolong, DING Ning,et al. Photocatalytic degradation of trihalomethanes and haloacetonitriles on graphitic carbon nitride under visible light irradiation[J]. Science of the Total Environment, 2019, 682:200-207. doi: 10.1016/j.scitotenv.2019.05.075
|
5 |
MAMBA G, MISHRA A K. Graphitic carbon nitride(g-C 3N 4) nanocomposites:A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Applied Catalysis B:Environmental, 2016, 198:347-377. doi: 10.1016/j.apcatb.2016.05.052
|
6 |
XU BENTUO, AHMED M B, ZHOU J L,et al. Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation:Progress,limitations and future directions[J]. Science of the Total Environment, 2018, 633:546-559. doi: 10.1016/j.scitotenv.2018.03.206
|
7 |
赵福友,金泽睿,曹帅杰,等. 超声协同g-C3N4光催化降解罗丹明B的研究[J]. 工业水处理,2021,41(1):113-117.
|
|
ZHAO Fuyou, JIN Zerui, CAO Shuaijie,et al. Degradation Rhodamine B by ultrasond coupled with g-C3N4 photocatalysis[J]. Industrial Water Treatment,2021,41(1):113-117.
|
8 |
|
|
WANG Lijuan, ZHANG Haixiao, ZHANG Rui,et al. Degradation of methylene blue by sodium persulfate dark reaction activated with graphitic carbon nitride[J]. Industrial Water Treatment, 2020, 40(8):75-79. doi: 10.1088/1757-899x/397/1/012094
|
9 |
DONG Guoping, ZHANG Yuanhao, PAN Qiwen,et al. A fantastic graphitic carbon nitride(g-C 3N 4) material:Electronic structure,photocatalytic and photoelectronic properties[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2014, 20:33-50. doi: 10.1016/j.jphotochemrev.2014.04.002
|
10 |
WANG Chongchen, YI Xiaohong, WANG Peng. Powerful combination of MOFs and C 3N 4 for enhanced photocatalytic performance[J]. Applied Catalysis B:Environmental, 2019, 247:24-48. doi: 10.1016/j.apcatb.2019.01.091
|
11 |
ZHENG Qinmin, SHEN Hongchen, SHUAI Danmeng. Emerging investigators series:Advances and challenges of graphitic carbon nitride as a visible-light-responsive photocatalyst for sustainable water purification[J]. Environmental Science:Water Research & Technology, 2017, 3(6):982-1001. doi: 10.1039/c7ew00159b
|
12 |
LI Yunfeng, ZHOU Minghua, CHENG Bei,et al. Recent advances in g-C 3N 4-based heterojunction photocatalysts[J]. Journal of Materials Science & Technology, 2020, 56:1-17. doi: 10.1016/j.jmst.2020.04.028
|
13 |
|
|
LIU Tingyu, GONG Yitong, ZHAO Jin,et al. Study on the degradation of Rhodamine B by Co 3O 4/g-C 3N 4 composite photocatalyst[J]. Industrial Water Treatment, 2020, 40(2):92-95. doi: 10.11894/iwt.2019-0002
|
14 |
AROTIBA O A, ORIMOLADE B O, KOIKI B A. Visible light-driven photoelectrocatalytic semiconductor heterojunction anodes for water treatment applications[J]. Current Opinion in Electrochemistry, 2020, 22:25-34. doi: 10.1016/j.coelec.2020.03.018
|
15 |
WANG Dengjun, SALEH N B, SUN Wenjie,et al. Next-generation multifunctional carbon-metal nanohybrids for energy and environmental applications[J]. Environmental Science & Technology, 2019, 53(13):7265-7287. doi: 10.1021/acs.est.9b01453
|
16 |
TAO Qingqing, BI Jingtao, HUANG Xin,et al. Fabrication,application,optimization and working mechanism of Fe 2O 3 and its composites for contaminants elimination from wastewater[J]. Chemosphere, 2021, 263:127889. doi: 10.1016/j.chemosphere.2020.127889
|
17 |
WANG Songcan, YUN J H, LUO Bin,et al. Recent progress on visible light responsive heterojunctions for photocatalytic applications[J]. Journal of Materials Science & Technology, 2017, 33(1):1-22. doi: 10.1016/j.jmst.2016.11.017
|
18 |
ZHANG Liping, JARONIEC M. Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications[J]. Applied Surface Science, 2018, 430:2-17. doi: 10.1016/j.apsusc.2017.07.192
|
19 |
REN Yijie, ZENG Deqian, ONG W J. Interfacial engineering of graphitic carbon nitride(g-C 3N 4)-based metal sulfide heterojunction photocatalysts for energy conversion:A review[J]. Chinese Journal of Catalysis, 2019, 40(3):289-319. doi: 10.1016/s1872-2067(19)63293-6
|
20 |
FU Junwei, YU Jiaguo, JIANG Chuanjia,et al. g-C 3N 4-based heterostructured photocatalysts[J]. Advanced Energy Materials, 2018, 8(3):1701503. doi: 10.1002/aenm.201701503
|
21 |
HUA Shixin, QU Dan, AN Li,et al. Highly efficient p-type Cu 3P/n-type g-C 3N 4 photocatalyst through Z-scheme charge transfer route[J]. Applied Catalysis B:Environmental, 2019, 240:253-261. doi: 10.1016/j.apcatb.2018.09.010
|
22 |
Jinxiang LOW, JIANG Chuanjia, CHENG Bei,et al. A review of direct Z-scheme photocatalysts[J]. Small Methods, 2017, 1(5):1700080. doi: 10.1002/smtd.201700080
|
23 |
KUMAR A, RAIZADA P, SINGH P,et al. Perspective and status of polymeric graphitic carbon nitride based Z-scheme photocatalytic systems for sustainable photocatalytic water purification[J]. Chemical Engineering Journal, 2020, 391:123496. doi: 10.1016/j.cej.2019.123496
|
24 |
XU Quanlong, ZHANG Liuyang, YU Jiaguo,et al. Direct Z-scheme photocatalysts:Principles,synthesis,and applications[J]. Materials Today, 2018, 21(10):1042-1063. doi: 10.1016/j.mattod.2018.04.008
|
25 |
ZHOU Peng, YU Jiaguo, JARONIEC M. All-solid-state Z-scheme photocatalytic systems[J]. Advanced Materials, 2014, 26(29):4920-4935. doi: 10.1002/adma.201400288
|
26 |
MARSCHALL R. Semiconductor composites:Strategies for enhancing charge carrier separation to improve photocatalytic activity[J]. Advanced Functional Materials, 2014, 24(17):2421-2440. doi: 10.1002/adfm.201303214
|
27 |
LAN Yayao, LIU Zhifeng, GUO Zhengang,et al. A promising p-type Co-ZnFe 2O 4 nanorod film as a photocathode for photoelectrochemical water splitting[J]. Chemical Communications, 2020, 56(39):5279-5282. doi: 10.1039/d0cc00273a
|
28 |
LIU Shouqing, ZHU Xiaolei, ZHOU Yang,et al. Smart photocatalytic removal of ammonia through molecular recognition of zinc ferrite/reduced graphene oxide hybrid catalyst under visible-light irradiation[J]. Catalysis Science & Technology, 2017, 7(15):3210-3219. doi: 10.1039/c7cy00797c
|
29 |
BORTHAKUR S, SAIKIA L. ZnFe 2O 4@g-C 3N 4 nanocomposites:An efficient catalyst for Fenton-like photodegradation of environmentally pollutant Rhodamine B[J]. Journal of Environmental Chemical Engineering, 2019, 7(2):103035. doi: 10.1016/j.jece.2019.103035
|
30 |
PALANIVEL B, PERUMAL S D M, MAIYALAGAN T,et al. Rational design of ZnFe 2O 4/g-C 3N 4 nanocomposite for enhanced photo-Fenton reaction and supercapacitor performance[J]. Applied Surface Science, 2019, 498:143807. doi: 10.1016/j.apsusc.2019.143807
|
31 |
DAS K K, PATNAIK S, MANSINGH S,et al. Enhanced photocatalytic activities of polypyrrole sensitized zinc ferrite/graphitic carbon nitride n-n heterojunction towards ciprofloxacin degradation,hydrogen evolution and antibacterial studies[J]. Journal of Colloid and Interface Science, 2020, 561:551-567. doi: 10.1016/j.jcis.2019.11.030
|
32 |
MAJDOUB M, ANFAR Z, AMEDLOUS A. Emerging chemical functionalization of g-C 3N 4:Covalent/noncovalent modifications and applications[J]. ACS Nano, 2020, 14(10):12390-12469. doi: 10.1021/acsnano.0c06116
|
33 |
PUTRI L K, NG B J, ONG W J,et al. Engineering nanoscale p-n junction via the synergetic dual-doping of p-type boron-doped graphene hybridized with n-type oxygen-doped carbon nitride for enhanced photocatalytic hydrogen evolution[J]. Journal of Materials Chemistry A, 2018, 6(7):3181-3194. doi: 10.1039/c7ta09723a
|
34 |
ZHANG Wang, QUAN Bo, LEE C,et al. One-step facile solvothermal synthesis of copper ferrite-graphene composite as a high-performance supercapacitor material[J]. ACS Applied Materials & Interfaces, 2015, 7(4):2404-2414. doi: 10.1021/am507014w
|
35 |
YAO Yunjin, LU Fang, ZHU Yanping,et al. Magnetic core-shell CuFe 2O 4@C 3N 4 hybrids for visible light photocatalysis of orange Ⅱ[J]. Journal of Hazardous Materials, 2015, 297:224-233. doi: 10.1016/j.jhazmat.2015.04.046
|
36 |
曹宇,宋思扬,吴丹,等. CuFe2O4/g-C3N4非均相光Fenton降解罗丹明B的研究[J].工业水处理,2021,41(6):221-226.
|
|
CAO Yu, SONG Siyang, WU Dan,et al. Heterogeneous photo-Fenton processes using CuFe2O4/g-C3N4 for the degradation of Rhodamine B[J]. Industrial Water Treatment,2020,40(2):92-95.
|
37 |
LI Ruobai, CAI Meixuan, XIE Zhijie,et al. Construction of heterostructured CuFe 2O 4/g-C 3N 4 nanocomposite as an efficient visible light photocatalyst with peroxydisulfate for the organic oxidation[J]. Applied Catalysis B:Environmental, 2019, 244:974-982. doi: 10.1016/j.apcatb.2018.12.043
|
38 |
WANG Xiangyu, WANG Anqi, MA Jun. Visible-light-driven photocatalytic removal of antibiotics by newly designed C 3N 4@MnFe 2O 4-graphene nanocomposites[J]. Journal of Hazardous Materials, 2017, 336:81-92. doi: 10.1016/j.jhazmat.2017.04.012
|
39 |
WANG Jing, YUE Min, HAN Yuze,et al. Highly-efficient degradation of triclosan attributed to peroxymonosulfate activation by heterogeneous catalyst g-C 3N 4/MnFe 2O 4 [J]. Chemical Engineering Journal, 2020, 391:123554. doi: 10.1016/j.cej.2019.123554
|
40 |
WU Yan, WANG Hou, TU Wenguang,et al. Quasi-polymeric construction of stable perovskite-type LaFeO 3/g-C 3N 4 heterostructured photocatalyst for improved Z-scheme photocatalytic activity via solid p-n heterojunction interfacial effect[J]. Journal of Hazardous Materials, 2018, 347:412-422. doi: 10.1016/j.jhazmat.2018.01.025
|
41 |
南峰. 二维材料/氧化物半导体异质结制备及其光电化学与光催化性能的研究[D]. 苏州:苏州大学,2018.
|
|
Feng NAN. Preparation of two-dimensional materials/oxide semiconductor heterojunctions and their photoelectrochemical/photocatalytic properties[D]. Suzhou:Soochow University,2018.
|
42 |
XU Yuhuan, DING Lijun, WEN Zuorui,et al. Core-shell LaFeO 3@g-C 3N 4 p-n heterostructure with improved photoelectrochemical performance for fabricating streptomycin aptasensor[J]. Applied Surface Science, 2020, 511:145571. doi: 10.1016/j.apsusc.2020.145571
|
43 |
WANG Xingfu, MAO Weiwei, ZHANG Jian,et al. Facile fabrication of highly efficient g-C 3N 4/BiFeO 3 nanocomposites with enhanced visible light photocatalytic activities[J]. Journal of Colloid and Interface Science, 2015, 448:17-23. doi: 10.1016/j.jcis.2015.01.090
|
44 |
LI Haijin, TU Wenguang, ZHOU Yong,et al. Z-scheme photocatalytic systems for promoting photocatalytic performance:Recent progress and future challenges[J]. Advanced Science, 2016, 3(11):1500389. doi: 10.1002/advs.201500389
|
45 |
GEBRESLASSIE G, BHARALI P, CHANDRA U,et al. Novel g-C 3N 4/graphene/NiFe 2O 4 nanocomposites as magnetically separable visible light driven photocatalysts[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 382:111960. doi: 10.1016/j.jphotochem.2019.111960
|
46 |
LIU Chang, Huihong LÜ, YU Changlin,et al. Novel FeWO 4/WO 3 nanoplate with p-n heterostructure and its enhanced mechanism for organic pollutants removal under visible-light illumination[J]. Journal of Environmental Chemical Engineering, 2020, 8(5):104044. doi: 10.1016/j.jece.2020.104044
|
47 |
WANG Cong, WANG Guanlong, ZHANG Xiufang,et al. Construction of g-C 3N 4 and FeWO 4 Z-scheme photocatalyst:Effect of contact ways on the photocatalytic performance[J]. RSC Advances, 2018, 8(33):18419-18426. doi: 10.1039/c8ra02882f
|
48 |
RABÉ K, LIU Lifen, NAHYOON N A,et al. Fabrication of high efficiency visible light Z-scheme heterostructure photocatalyst g-C 3N 4/Fe 0(1%)/TiO 2 and degradation of Rhodamine B and antibiotics[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 96:463-472. doi: 10.1016/j.jtice.2018.12.016
|
49 |
WANG Xiangyu, LU Mengyang, MA Jun,et al. Preparation of air-stable magnetic g-C 3N 4@Fe 0-graphene composite by new reduction method for simultaneous and synergistic conversion of organic dyes and heavy metal ions in aqueous solution[J]. Separation and Purification Technology, 2019, 212:586-596. doi: 10.1016/j.seppur.2018.11.052
|
50 |
MISHRA P, BEHERA A, KANDI D,et al. Facile construction of a novel NiFe 2O 4@P-doped g-C 3N 4 nanocomposite with enhanced visible-light-driven photocatalytic activity[J]. Nanoscale Advances, 2019, 1(5):1864-1879. doi: 10.1039/c9na00018f
|
51 |
MISHRA P, BEHERA A, KANDI D,et al. Novel magnetic retrievable visible-light-driven ternary Fe 3O 4@NiFe 2O 4/phosphorus-doped g-C 3N 4 nanocomposite photocatalyst with significantly enhanced activity through a double-Z-scheme system[J]. Inorganic Chemistry, 2020, 59(7):4255-4272. doi: 10.1021/acs.inorgchem.9b02996
|
52 |
ZHAO Guanshu, DING Jing, ZHOU Fanyang,et al. Construction of a visible-light-driven magnetic dual Z-scheme BiVO 4/g-C 3N 4/NiFe 2O 4 photocatalyst for effective removal of ofloxacin:Mechanisms and degradation pathway[J]. Chemical Engineering Journal, 2021, 405:126704. doi: 10.1016/j.cej.2020.126704
|
53 |
王崇臣,王恂. 金属-有机骨架在水处理中的应用研究进展[J]. 工业水处理,2020,40(11):1-9.
|
|
WANG Chongchen, WANG Xun. The application of metal-organic frameworks in the wastewater treatment:A state-of-the-art review[J]. Industrial Water Treatment,2020,40(11):1-9.
|
54 |
SHAO Zhuwang, ZHANG Dafeng, LI Hong,et al. Fabrication of MIL-88A/g-C 3N 4 direct Z-scheme heterojunction with enhanced visible-light photocatalytic activity[J]. Separation and Purification Technology, 2019, 220:16-24. doi: 10.1016/j.seppur.2019.03.040
|
55 |
ZHAO Feiping, LIU Yongpeng, HAMMOUDA S B,et al. MIL-101(Fe)/g-C 3N 4 for enhanced visible-light-driven photocatalysis toward simultaneous reduction of Cr(Ⅵ) and oxidation of bisphenol A in aqueous media[J]. Applied Catalysis B:Environmental, 2020, 272:119033. doi: 10.1016/j.apcatb.2020.119033
|
56 |
CUI Yuqi, NENGZI Lichao, GOU Jianfeng,et al. Fabrication of dual Z-scheme MIL-53(Fe)/ α-Bi 2O 3/g-C 3N 4 ternary composite with enhanced visible light photocatalytic performance[J]. Separation and Purification Technology, 2020, 232:115959. doi: 10.1016/j.seppur.2019.115959
|
57 |
AN Sufeng, ZHANG Guanghui, WANG Tingwen,et al. High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride(g-C 3N 4) for highly efficient catalytic advanced oxidation processes[J]. ACS Nano, 2018, 12(9):9441-9450. doi: 10.1021/acsnano.8b04693
|
58 |
PAN Tao, CHEN Dongdong, FANG Jianzhang,et al. Facile synthesis of iron and cerium co-doped g-C 3N 4 with synergistic effect to enhance visible-light photocatalytic performance[J]. Materials Research Bulletin, 2020, 125:110812. doi: 10.1016/j.materresbull.2020.110812
|
59 |
WANG Xunhe, Zhaodong NAN. Highly efficient Fenton-like catalyst Fe-g-C 3N 4 porous nanosheets formation and catalytic mechanism[J]. Separation and Purification Technology, 2020, 233:116023. doi: 10.1016/j.seppur.2019.116023
|
60 |
HU Jinshan, ZHANG Pengfei, AN Weijia,et al. In-situ Fe-doped g-C 3N 4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater[J]. Applied Catalysis B:Environmental, 2019, 245:130-142. doi: 10.1016/j.apcatb.2018.12.029
|
61 |
MA Tao, SHEN Qianqian, ZHAO Bin,et al. Facile synthesis of Fe-doped g-C 3N 4 for enhanced visible-light photocatalytic activity[J]. Inorganic Chemistry Communications, 2019, 107:107451. doi: 10.1016/j.inoche.2019.107451
|
62 |
HU Jinshan, ZHANG Pengfei, CUI Jifang,et al. High-efficiency removal of phenol and coking wastewater via photocatalysis-Fenton synergy over a Fe-g-C 3N 4 graphene hydrogel 3D structure[J]. Journal of Industrial and Engineering Chemistry, 2020, 84:305-314. doi: 10.1016/j.jiec.2020.01.012
|
63 |
MIAO Wei, LIU Ying, CHEN Xiaoyan,et al. Tuning layered Fe-doped g-C 3N 4 structure through pyrolysis for enhanced Fenton and photo-Fenton activities[J]. Carbon, 2020, 159:461-470. doi: 10.1016/j.carbon.2019.12.056
|
64 |
WANG Wenyan, XU Yunlan, ZHONG Dengjie,et al. Electron utilization efficiency of ZVI core activating PMS enhanced by C-N/g-C 3N 4 shell[J]. Applied Catalysis A:General, 2020, 608:117828. doi: 10.1016/j.apcata.2020.117828
|
65 |
KONG Wenjia, YUE Qinyan, GAO Yue,et al. Enhanced photodegradation of sulfadimidine via PAA/g-C 3N 4-Fe 0 polymeric catalysts under visible light[J]. Chemical Engineering Journal, 2021, 413:127456. doi: 10.1016/j.cej.2020.127456
|