1 |
|
|
WANG Chun, WANG Wenlong, LIU Xin,et al.Study on the removal of organic pollutants and acute toxicity variation in the process of dyeing wastewater treatment[J]. Acta Scientiae Circumstantiae, 2019, 39(10):3434-3441. doi: 10.13671/j.hjkxxb.2019.0268
|
2 |
中华人民共和国生态环境部. 2015年环境统计年报[R].2017.
|
|
Ministry of ecology and environment of the People’s Republic of China. The 2015 annual statistic report on environment[R].2017.
|
3 |
YASEEN D A, SCHOLZ M.Textile dye wastewater characteristics and constituents of synthetic effluents:A critical review[J]. International Journal of Environmental Science and Technology, 2019, 16(2):1193-1226. doi: 10.1007/s13762-018-2130-z
|
4 |
GIANNAKIS S, LIN K Y A, GHANBARI F. A review of the recent advances on the treatment of industrial wastewaters by sulfate radical-based advanced oxidation processes(SR-AOPs)[J]. Chemical Engineering Journal, 2021, 406:127083. doi: 10.1016/j.cej.2020.127083
|
5 |
HOLKAR C R, JADHAV A J, PINJARI D V,et al. A critical review on textile wastewater treatments:Possible approaches[J]. Journal of Environmental Management, 2016, 182:351-366. doi: 10.1016/j.jenvman.2016.07.090
|
6 |
ZHANG Guoyang, ZHANG Shujuan.Quantitative structure-activity relationship in the photodegradation of azo dyes[J]. Journal of Environmental Sciences, 2020, 90:41-50. doi: 10.1016/j.jes.2019.11.009
|
7 |
MA Dengsheng, YI Huan, LAI Cui,et al.Critical review of advanced oxidation processes in organic wastewater treatment[J]. Chemosphere, 2021, 275:130104. doi: 10.1016/j.chemosphere.2021.130104
|
8 |
|
|
ZHANG Haibing, ZHOU Yasong, GUO Shaohui,et al. Advances of advanced oxidation process to treat aniline wastewater[J]. Industrial Water Treatment, 2021, 41(6):167-172. doi: 10.11894/iwt.2020-0641
|
9 |
YANG Qi, MA Yinghao, CHEN Fei,et al.Recent advances in photo-activated sulfate radical-advanced oxidation process(SR-AOP) for refractory organic pollutants removal in water[J]. Chemical Engineering Journal, 2019, 378:122149. doi: 10.1016/j.cej.2019.122149
|
10 |
|
|
WANG Lijuan, WANG Ying, LI Xiaoning,et al.Graphitic carbon nitride(g-C 3N 4) activated perdisulfate(PDS)for the degradation of methylene blue(MB)[J]. Industrial Water Treatment, 2019, 39(3):75-79. doi: 10.11894/1005-829x.2019.39(3).075
|
11 |
陈卫刚,武海霞,樊佳炜.活性炭非均相活化不同过硫酸盐降解偶氮染料酸性橙Ⅱ[J].环境工程,2020,38(8):113-118.
|
|
CHEN Weigang, WU Haixia, FAN Jiawei.Activated carbon heterogeneous activation of different persulfates to degradation azo dye acid orange Ⅱ[J].Environmental Engineering,2020,38(8):113-118.
|
12 |
|
|
MI Jiru, TIAN Liping, LIU Lili,et al.Research progress on persulfate activation method[J]. Industrial Water Treatment, 2020, 40(7):12-17. doi: 10.11894/iwt.2019-0743
|
13 |
|
|
HU Qian, YANG Hai, TAO Wenjie,et al.Degradation kinetic and transformation mechanism of acid red 37 in UV/K 2S 2O 8 system[J]. Environmental Chemistry, 2019, 38(12):2869-2878. doi: 10.7524/j.issn.0254-6108.2019011703
|
14 |
DING Xinxin, GUTIERREZ L, CROUE J P,et al.Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H 2O 2 and UV/persulfate systems:Kinetics,mechanisms,and comparison[J]. Chemosphere, 2020, 253:126655. doi: 10.1016/j.chemosphere.2020.126655
|
15 |
RUSEVOVA CRINCOLI K, HULING S G.Contrasting hydrogen peroxide- and persulfate-driven oxidation systems:Impact of radical scavenging on treatment efficiency and cost[J]. Chemical Engineering Journal, 2021, 404:126404. doi: 10.1016/j.cej.2020.126404
|
16 |
WEN Dong, LI Wentao, LV Jinrong,et al.Methylene blue degradation by the VUV/UV/persulfate process:Effect of pH on the roles of photolysis and oxidation[J]. Journal of Hazardous Materials, 2020, 391:121855. doi: 10.1016/j.jhazmat.2019.121855
|
17 |
KRAWCZYK K, WACŁAWEK S, KUDLEK E,et al.UV-catalyzed persulfate oxidation of an anthraquinone based dye[J]. Catalysts, 2020, 10(4):456. doi: 10.3390/catal10040456
|
18 |
赵娟娟,丘烨铃,胡赟,等.改性活性炭催化过硫酸盐处理甲基橙废水[J].工业水处理,2022,42(1):115-120.
|
|
ZHAO Juanjuan, QIU Yeling, HU Yun,et al.Treatment methyl orange with persulfate activated by modified activated carbon[J].Industrial Water Treatment,2022,42(1):115-120.
|
19 |
PAŹDZIOR K, BILIŃSKA L, LEDAKOWICZ S.A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment[J]. Chemical Engineering Journal, 2019, 376:120597. doi: 10.1016/j.cej.2018.12.057
|
20 |
YANG Jingling, ZHU Mingshan, DIONYSIOU D D.What is the role of light in persulfate-based advanced oxidation for water treatment?[J]. Water Research, 2021, 189:116627. doi: 10.1016/j.watres.2020.116627
|
21 |
YAO Hong, SUN Peizhe, MINAKATA D,et al.Kinetics and modeling of degradation of ionophore antibiotics by UV and UV/H 2O 2 [J]. Environmental Science & Technology, 2013, 47(9):4581-4589. doi: 10.1021/es3052685
|
22 |
PAŹDZIOR K, BILIŃSKA L, LEDAKOWICZ S.A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment[J]. Chemical Engineering Journal, 2019, 376:120597. doi: 10.1016/j.cej.2018.12.057
|
23 |
WANG Jianlong, WANG Shizong.Reactive species in advanced oxidation processes:Formation,identification and reaction mechanism[J]. Chemical Engineering Journal, 2020, 401:126158. doi: 10.1016/j.cej.2020.126158
|
24 |
WANG Jianlong, WANG Shizong.Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants[J]. Chemical Engineering Journal, 2021, 411:128392. doi: 10.1016/j.cej.2020.128392
|
25 |
|
|
CHEN Lirong, WANG Yingzhou, CHENG Lujiao,et al.Experimental study on degradation of quinoline in wastewater by UV/PS process[J]. Applied Chemical Industry, 2020, 49(6):1452-1456. doi: 10.3969/j.issn.1671-3206.2020.06.028
|
26 |
|
|
BAI Mengqi, LI Minrui, DING Xinxin,et al.Quenching effect of different quenchers on SO 4 ·- and ·OH based advanced oxidation processes[J]. Industrial Water Treatment, 2021, 41(8):75-80. doi: 10.19965/j.cnki.iwt.2020-1050
|
27 |
YUAN Songhu, LIAO Peng, ALSHAWABKEH A N.Electrolytic manipulation of persulfate reactivity by iron electrodes for trichloroethylene degradation in groundwater[J]. Environmental Science & Technology, 2014, 48(1):656-663. doi: 10.1021/es404535q
|