1 |
BOUABIDI Z B, EL-NAAS M H, ZHANG Z. Immobilization of microbial cells for the biotreatment of wastewater: a review[J]. Environmental Chemistry Letters, 2019, 17(1): 241-257. doi:10.1007/s10311-018-0795-7
|
2 |
KELESSIDIS A, STASINAKIS A S. Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries[J]. Waste Management, 2012, 32(6): 1186-1195. doi:10.1016/j.wasman.2012.01.012
|
3 |
谢昆,尹静,陈星.中国城市污水处理工程污泥处置技术研究进展[J].工业水处理,2020,40(7):18-23. doi:10.11894/iwt.2019-0622
|
|
XIE Kun, YIN Jing, CHEN Xing. Research progress on sludge treatment technology of urban sewage treatment project in China[J]. Industrial Water Treatment, 2020,40(7):18-23. doi:10.11894/iwt.2019-0622
|
4 |
WALCZAK J, ZUBROWSKA-SUDOL M. The rate of denitrification using hydrodynamically disintegrated excess sludge as an organic carbon source[J]. Water Science and Technology, 2018, 77(9): 2165-2173. doi:10.2166/wst.2018.125
|
5 |
刘丽君, 周娅琳, 阮建明, 等. 次氯酸钠消毒剂的分解特性及氯酸盐副产物形成规律探讨[J]. 给水排水, 2019, 45(6): 54-58.
|
|
LIU Lijun, ZHOU Yalin, RUAN Jianming, et al. Decomposition characteristics and chlorate formation rules of sodium hypochlorite disinfectant[J]. Water & Wastewater Engineering, 2019, 45(6): 54-58.
|
6 |
WEI H, TANG Y, SHOEIB T, et al. Evaluating the effects of the preoxidation of H2O2, NaClO, and KMnO4 and reflocculation on the dewaterability of sewage sludge[J]. Chemosphere, 2019, 234: 942-952. doi:10.1016/j.chemosphere.2019.06.131
|
7 |
HAWKINS C L, PATTISON D I, DAVIES M J. Hypochlorite-induced oxidation of amino acids, peptides and proteins[J]. Amino acids, 2003, 25(3): 259-274. doi:10.1007/s00726-003-0016-x
|
8 |
ISHIHARA M, MURAKAMI K, FUKUDA K, et al. Stability of weakly acidic hypochlorous acid solution with microbicidal activity[J]. Biocontrol science, 2017, 22(4): 223-227. doi:10.4265/bio.22.223
|
9 |
郭绍东, 李晨曦, 黄兴虎, 等. 次氯酸钠与亚铁对污泥破解及脱水效果的影响[J]. 环境科学学报, 2021, 41(8): 3130-3137.
|
|
GUO Shaodong, LI Chenxi, HUANG Xinghu, et al. Effects of sodium hypochlorite and ferrous iron on sludge disintegration and dewatering[J]. Acta Scientiae Circumstantiae, 2021, 41(8): 3130-3137.
|
10 |
孙健,李露,刘海燕,等.余氯对城市污水处理厂生化系统的影响研究[J].给水排水,2021,57(4):45-52.
|
|
SUN Jian, LI Lu, LIU Haiyan, et al. Study on the effect of residual chlorine on biochemical system of municipal wastewater treatment plant[J]. Water & Wastewater Engineering, 2021, 57(4):45-52.
|
11 |
AHN Y Y, CHOI J, KIM M, et al. Chloride-mediated enhancement in heat-induced activation of peroxymonosulfate: New reaction pathways for oxidizing radical production[J]. Environmental Science & Technology, 2021, 55(8): 5382-5392. doi:10.1021/acs.est.0c07964
|
12 |
席兆胜, 孙井梅, 李湘中. 煮沸对自来水中氯仿含量的影响[J]. 中国给水排水, 2006, 22(15): 47-49. doi:10.3321/j.issn:1000-4602.2006.15.013
|
|
XI Zhaosheng, SUN Jingmei, LI Xiangzhong. Effects of boiling on concentration of chloroform in tap water[J]. China Water & Wastewater, 2006, 22(15): 47-49. doi:10.3321/j.issn:1000-4602.2006.15.013
|
13 |
BARBER W P F. Thermal hydrolysis for sewage treatment: a critical review[J]. Water Research, 2016, 104: 53-71. doi:10.1016/j.watres.2016.07.069
|
14 |
WANG R, TANG A P. Influence of the dissolution laws of N, P on the activated sludge by ozone oxidation[J]. Applied Mechanics and Materials, 2013, 295: 1215-1221. doi:10.4028/www.scientific.net/amm.295-298.1215
|
15 |
LI Y, HU Y, WANG G, et al. Screening pretreatment methods for sludge disintegration to selectively reclaim carbon source from surplus activated sludge[J]. Chemical Engineering Journal, 2014, 255: 365-371. doi:10.1016/j.cej.2014.06.034
|
16 |
YU W, WEN Q, YANG J, et al. Unraveling oxidation behaviors for intracellular and extracellular from different oxidants (HOCl vs. H2O2) catalyzed by ferrous iron in waste activated sludge dewatering[J]. Water Research, 2019, 148: 60-69. doi:10.1016/j.watres.2018.10.033
|
17 |
SUDHA M, RENU G, SANGEETA G. Mineralization and degradation of 4-nitrophenol using homogeneous Fenton oxidation process[J]. Environmental Engineering Research, 2021, 26(3):190145.
|
18 |
宫常修, 蒋建国, 杨世辉. 超声波耦合 Fenton 氧化对污泥破解效果的研究[J]. 中国环境科学, 2013, 33(2): 293-297.
|
|
GONG Changxiu, JIANG Jianguo, YANG Shihui. Effects of Fenton oxidation with ultrasonic coupling on sludge particle size and soluble substances[J]. China Environmental Science, 2013, 33(2): 293-297.
|
19 |
WU Y, JIANG Y, SONG K. Carbon source recovery from waste activated sludge by low-temperature thermal hydrolysis process[J]. Journal of Environmental Engineering, 2020, 146(1): 04019098. doi:10.1061/(asce)ee.1943-7870.0001631
|
20 |
张明霞,李安章,陈猛,等. 异养硝化-好氧反硝化菌脱氮相关酶系及其编码基因的研究进展[J].生物技术进展,2020,10(1):40-45.
|
|
ZHANG Mingxia, LI Anzhang, CHEN Meng, et al. Progress on nitrogen removal related enzymes and their coding genes in heterotrophic nitrifying and aerobic denitrifying bacteria[J]. Current Biotechnology, 2020,10(1):40-45.
|
21 |
张彦平,张千,李一兵,等. Fenton氧化对剩余污泥的溶胞效果[J]. 工业水处理,2018,38(1):20-22. doi:10.11894/1005-829x.2018.38(1).020
|
|
ZHANG Yanping, ZHANG Qian, LI Yibing, et al. Lysis effect of Fenton oxidation on residual sludge[J]. Industrial Water Treatment, 2018,38(1):20-22. doi:10.11894/1005-829x.2018.38(1).020
|
|
张彦平,呼瑞琪,李一兵,等. 高铁酸盐氧化剩余污泥溶胞减量研究[J]. 中国给水排水,2020,36(15):59-64. doi:10.11894/1005-829x.2018.38(1).020
|
|
ZHANG Yanping, HU Ruiqi, LI Yibing, et al. Lysis and reduction of excess sludge by ferrate oxidation[J]. China Water & Wastewater, 2020,36(15):59-64.
|
23 |
陈英文,刘明庆,惠祖刚,等. Fenton氧化破解剩余污泥的实验研究[J]. 环境工程学报,2011,5(2):409-413.
|
|
CHEN Yingwen, LIU Mingqing, HUI Zugang, et al. Experimental study on excess sludge disintegration by Fenton oxidation[J]. Chinese Journal of Environmental Engineering,2011,5(2):409-413.
|
24 |
ZHANG Y, LU G, ZHANG H, et al. Enhancement of nitrogen and phosphorus removal, sludge reduction and microbial community structure in an anaerobic/anoxic/oxic process coupled with composite ferrate solution disintegration[J]. Environmental Research, 2020, 190: 110006. doi:10.1016/j.envres.2020.110006
|
25 |
ZHANG L, HUANG Y, LI S, et al. Optimization of nitrogen removal in solid carbon source SND for treatment of low-carbon municipal wastewater with RSM method[J]. Water, 2018, 10(7): 827. doi:10.3390/w10070827
|
26 |
ZHANG Y, ZHANG P, GUO J, et al. Spectroscopic analysis and biodegradation potential study of dissolved organic matters in sewage sludge treated with high-pressure homogenization[J]. Bioresource Technology, 2013, 135: 616-621. doi:10.1016/j.biortech.2012.09.034
|