1 |
SHANNON M A, BOHN P W, ELIMELECH M,et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185):301-310. doi: 10.1038/nature06599
|
2 |
SUBRAMANI A, JACANGELO J G. Emerging desalination technologies for water treatment:A critical review[J]. Water Research, 2015, 75:164-187. doi: 10.1016/j.watres.2015.02.032
|
3 |
RAZMJOU A, ESHAGHI G, OROOJI Y,et al. Lithium ion-selective membrane with 2D subnanometer channels[J]. Water Research, 2019, 159:313-323. doi: 10.1016/j.watres.2019.05.018
|
4 |
WANG Ruoyu, ZHANG Junwei, TANG C Y,et al. Understanding selectivity in solute-solute separation:Definitions,measurements,and comparability[J]. Environmental Science & Technology, 2022, 56(4):2605-2616. doi: 10.1021/acs.est.1c06176
|
5 |
WARSINGER D M, CHAKRABORTY S, TOW E W,et al. A review of polymeric membranes and processes for potable water reuse[J]. Progress in Polymer Science, 2018, 81:209-237. doi: 10.1016/j.progpolymsci.2018.01.004
|
6 |
STRATHMANN H. Electrodialysis,a mature technology with a multitude of new applications[J]. Desalination, 2010, 264(3):268-288. doi: 10.1016/j.desal.2010.04.069
|
7 |
|
|
LUO Sheng, ZHU Ming, TIAN Binghui,et al. Research progress and the main influencing factors of fluoride removal by electrodialysis water treatment[J]. Industrial Water Treatment, 2022, 42(12):1-9. doi: 10.19965/j.cnki.iwt.2021-1159
|
8 |
|
|
LI Fuqin, ZHU Min, ZHANG Yingong,et al. Separation of monovalent/divalent anions in high-salt wastewater by monovalent selective electrodialysis[J]. Industrial Water Treatment, 2021, 41(9):56-59. doi: 10.19965/j.cnki.iwt.2020-1176
|
9 |
ZHANG Huacheng, TIAN Ye, JIANG Lei. Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels[J]. Nano Today, 2016, 11(1):61-81. doi: 10.1016/j.nantod.2015.11.001
|
10 |
HOU Xu, ZHANG Huacheng, JIANG Lei. Building bio-inspired artificial functional nanochannels:From symmetric to asymmetric modification[J]. Angewandte Chemie International Edition, 2012, 51(22):5296-5307. doi: 10.1002/anie.201104904
|
11 |
DOYLE D A, MORAIS CABRAL J, PFUETZNER R A,et al. The structure of the potassium channel:Molecular basis of K + conduction and selectivity[J]. Science, 1998, 280(5360):69-77. doi: 10.1126/science.280.5360.69
|
12 |
STOCKBRIDGE R B, KOLMAKOVA-PARTENSKY L, SHANE T,et al. Crystal structures of a double-barrelled fluoride ion channel[J]. Nature, 2015, 525(7570):548-551. doi: 10.1038/nature14981
|
13 |
DURAN C, THOMPSON C H, XIAO Qinghuan,et al. Chloride channels:Often enigmatic,rarely predictable[J]. Annual Review of Physiology, 2010, 72:95-121. doi: 10.1146/annurev-physiol-021909-135811
|
14 |
KANG Q, GUO W. Biomimetic smart nanopores and nanochannels[M]//AZZARONI O. Chemically Modified Nanopores and Nanochannels. Amsterdam:Elsevier, 2017:85-102. doi: 10.1016/b978-0-323-40182-1.00004-x
|
15 |
ZHANG Huacheng, LI Xingya, HOU Jue,et al. Angstrom-scale ion channels towards single-ion selectivity[J]. Chemical Society Reviews, 2022, 51(6):2224-2254. doi: 10.1039/d1cs00582k
|
16 |
ROY E, NAGAR A, CHAUDHARY S,et al. Advanced properties and applications of AIEgens-inspired smart materials[J]. Industrial & Engineering Chemistry Research, 2020, 59(23):10721-10736. doi: 10.1021/acs.iecr.0c01869
|
17 |
CONG Hailin, XU Xiaodan, YU Bing,et al. A smart temperature and magnetic-responsive gating carbon nanotube membrane for ion and protein transportation[J]. Scientific Reports, 2016, 6:32130. doi: 10.1038/srep32130
|
18 |
JI Jinzhao, KANG Qian, ZHOU Yi,et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs[J]. Advanced Functional Materials, 2017, 27(2):1603623. doi: 10.1002/adfm.201603623
|
19 |
WANG Zhuqing, WU Aiguo, COLOMBI CIACCHI L,et al. Recent advances in nanoporous membranes for water purification[J]. Nanomaterials, 2018, 8(2):65. doi: 10.3390/nano8020065
|
20 |
BARRY E, MCBRIDE S P, JAEGER H M,et al. Ion transport controlled by nanoparticle-functionalized membranes[J]. Nature Communications, 2014, 5:5847. doi: 10.1038/ncomms6847
|
21 |
LI Ruirui, JIANG Jiaqiao, LIU Qingqing,et al. Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation[J]. Nano Energy, 2018, 53:643-649. doi: 10.1016/j.nanoen.2018.09.015
|
22 |
ZHANG Wenbin, ZHU Yuzhang, LIU Xia,et al. Salt-induced fabrication of superhydrophilic and underwater superoleophobic PAA-g-PVDF membranes for effective separation of oil-in-water emulsions[J]. Angewandte Chemie International Edition, 2014, 53(3):856-860. doi: 10.1002/anie.201308183
|
23 |
TRAUTMANN C, BOUFFARD S, SPOHR R. Etching threshold for ion tracks in polyimide[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions With Materials and Atoms, 1996, 116(1/2/3/4):429-433. doi: 10.1016/0168-583x(96)00083-3
|
24 |
WU Shuhang, CHENG Yaxiong, MA Jie,et al. Preparation and ion separation properties of sub-nanoporous PES membrane with high chemical resistance[J]. Journal of Membrane Science, 2021, 635:119467. doi: 10.1016/j.memsci.2021.119467
|
25 |
HE Yuhui, TSUTSUI M, ZHOU Yue,et al. Solid-state nanopore systems:From materials to applications[J]. NPG Asia Materials, 2021, 13:48. doi: 10.1038/s41427-021-00313-z
|
26 |
KWOK H, BRIGGS K, TABARD-COSSA V. Nanopore fabrication by controlled dielectric breakdown[J]. PLoS One, 2014, 9(3):e92880. doi: 10.1371/journal.pone.0092880
|
27 |
WU Shanshan, PARK S R, LING X S. Lithography-free formation of nanopores in plastic membranes using laser heating[J]. Nano Letters, 2006, 6(11):2571-2576. doi: 10.1021/nl0619498
|
28 |
KUAN A T, LU Bo, XIE Ping,et al. Electrical pulse fabrication of graphene nanopores in electrolyte solution[J]. Applied Physics Letters, 2015, 106(20):203109. doi: 10.1063/1.4921620
|
29 |
ZHAO Yan, WU Mengyao, GUO Yi,et al. Metal-organic framework based membranes for selective separation of target ions[J]. Journal of Membrane Science, 2021, 634:119407. doi: 10.1016/j.memsci.2021.119407
|
30 |
XIANG Zhonghua, CAO Dapeng, LAN Jianhui,et al. Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks[J]. Energy & Environmental Science, 2010, 3(10):1469-1487. doi: 10.1039/c0ee00049c
|
31 |
WANG Chenghong, LIU Xinlei, DEMIR N K,et al. Applications of water stable metal-organic frameworks[J]. Chemical Society Reviews, 2016, 45(18):5107-5134. doi: 10.1039/c6cs00362a
|
32 |
LI Xingya, ZHANG Huacheng, WANG Peiyao,et al. Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels[J]. Nature Communications, 2019, 10:2490. doi: 10.1038/s41467-019-10420-9
|
33 |
VASELBEHAGH M, KARKHANECHI H, TAKAGI R,et al. Surface modification of an anion exchange membrane to improve the selectivity for monovalent anions in electrodialysis-experimental verification of theoretical predictions[J]. Journal of Membrane Science, 2015, 490:301-310. doi: 10.1016/j.memsci.2015.04.014
|
34 |
DUCHANOIS R M, EPSZTEIN R, TRIVEDI J A,et al. Controlling pore structure of polyelectrolyte multilayer nanofiltration membranes by tuning polyelectrolyte-salt interactions[J]. Journal of Membrane Science, 2019, 581:413-420. doi: 10.1016/j.memsci.2019.03.077
|
35 |
GOLUBENKO D V, MANIN A D, WANG Y,et al. The way to increase the monovalent ion selectivity of FujiFilm ® anion-exchange membranes by cerium phosphate modification for electrodialysis desalination[J]. Desalination, 2022, 531:115719. doi: 10.1016/j.desal.2022.115719
|
36 |
ZUO Peipei, XU Ziang, ZHU Qing,et al. Ion exchange membranes:Constructing and tuning ion transport channels[J]. Advanced Functional Materials, 2022, 32(52):2207366. doi: 10.1002/adfm.202207366
|
37 |
WEN Qi, YAN Dongxiao, LIU Feng,et al. Highly selective ionic transport through subnanometer pores in polymer films[J]. Advanced Functional Materials, 2016, 26(32):5796-5803. doi: 10.1002/adfm.201601689
|
38 |
HAN Le, GALIER S, ROUX-DE BALMANN H. Ion hydration number and electro-osmosis during electrodialysis of mixed salt solution[J]. Desalination, 2015, 373:38-46. doi: 10.1016/j.desal.2015.06.023
|
39 |
LIAO Junbin, YU Xinyan, CHEN Quan,et al. Monovalent anion selective anion-exchange membranes with imidazolium salt-terminated side-chains:Investigating the effect of hydrophobic alkyl spacer length[J]. Journal of Membrane Science, 2020, 599:117818. doi: 10.1016/j.memsci.2020.117818
|
40 |
MOHAPATRA M, ANAND S, MISHRA B K,et al. Review of fluoride removal from drinking water[J]. Journal of Environmental Management, 2009, 91(1):67-77. doi: 10.1016/j.jenvman.2009.08.015
|
41 |
STENINA I A, YAROSLAVTSEV A B. Ionic mobility in ion-exchange membranes[J]. Membranes, 2021, 11(3):198. doi: 10.3390/membranes11030198
|
42 |
STOCKBRIDGE R B, ROBERTSON J L, KOLMAKOVA-PARTENSKY L,et al. A family of fluoride-specific ion channels with dual-topology architecture[J]. eLife, 2013, 2:e01084. doi: 10.7554/elife.01084
|
43 |
ZHOU Xuechen, HEIRANIAN M, YANG Meiqi,et al. Selective fluoride transport in subnanometer TiO 2 pores[J]. ACS Nano, 2021, 15(10):16828-16838. doi: 10.1021/acsnano.1c07210
|
44 |
MEI Ying, TANG C Y. Recent developments and future perspectives of reverse electrodialysis technology:A review[J]. Desalination, 2018, 425:156-174. doi: 10.1016/j.desal.2017.10.021
|
45 |
KIM D K, DUAN Chuanhua, CHEN Yufeng,et al. Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels[J]. Microfluidics and Nanofluidics, 2010, 9(6):1215-1224. doi: 10.1007/s10404-010-0641-0
|
46 |
CLAUS H N. Comments on Ion Selectivity at the Crossroad between Biology and Biomimetics[J]. Advanced Materials Technologies, 2021, 6(10). DOI: 10.1002/admt.202001177 .
|