工业水处理 ›› 2025, Vol. 45 ›› Issue (5): 54-61. doi: 10.19965/j.cnki.iwt.2024-0382

• 试验研究 • 上一篇    下一篇

基于混合模型的重金属吸附树脂穿透曲线预测

许慕舰1(), 计成汉2, 袁岭1, 孔德洋3, 张孝林1, 吕路1, 张炜铭1()   

  1. 1. 南京大学环境学院污染控制与资源化研究国家重点实验室,江苏 南京 210023
    2. 南京林业大学 土木工程学院,江苏 南京 210037
    3. 生态环境部南京环境科学研究所国家环境保护农药环境 评价与污染控制重点实验室,江苏 南京 210042
  • 收稿日期:2024-07-29 出版日期:2025-05-20 发布日期:2025-05-22
  • 通讯作者: 张炜铭
  • 作者简介:

    许慕舰(1999— ),硕士,E-mail:

  • 基金资助:
    国家自然科学基金项目(U22A20403)

Breakthrough curve prediction of resins for heavy metal adsorption by hybrid model

Mujian XU1(), Chenghan JI2, Ling YUAN1, Deyang KONG3, Xiaolin ZHANG1, Lu LÜ1, Weiming ZHANG1()   

  1. 1. State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
    2. College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
    3. Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environment and Ecology of China, Nanjing 210042, China
  • Received:2024-07-29 Online:2025-05-20 Published:2025-05-22
  • Contact: Weiming ZHANG

摘要:

树脂固定床吸附工艺在含重金属废水深度处理中广泛应用,穿透曲线是其设计和优化的重要依据。当前,穿透曲线主要通过拟合柱实验数据获取经验模型参数来模拟,但该方法耗时耗力,且无法量化传质系数与多个影响因素间的关系。通过文献数据挖掘建立数据集,以Thomas模型参数k Thq 0为预测目标,训练并评价了决策树(DT)、随机森林(RF)、梯度提升(GBDT)和自适应增强(AdaBoost)4种机器学习(ML)模型,构建了AdaBoost-Thomas混合模型预测重金属吸附树脂固定床穿透曲线。结果表明,AdaBoost模型在预测k Thq 0中表现优异,其测试集上的R 2分别为0.755和0.832。AdaBoost-Thomas混合模型对重金属吸附树脂固定床穿透曲线具有良好的预测效果,相比传统方法,该模型能够在无柱实验数据支撑下,实现固定床穿透曲线快速、准确预测。

关键词: 机器学习, 树脂, 重金属吸附, 穿透曲线预测, 混合模型

Abstract:

The fixed-bed filled with resin adsorption process is widely used in the advanced treatment of industrial wastewater containing heavy metals, in which breakthrough curve is vital for its design and optimization. At present,the breakthrough curve is mainly simulated by fitting the column experimental data to obtain the parameters of empirical models. However, it is not only time-consuming and labor-intensive, but also unable to quantify the relationship between parameters and multiple factors. In this study, a dataset was established through mining the literature data, and four machine learning(ML) models, including DT, RF, GBDT and AdaBoost, were trained and evaluated with k Th and q 0 as prediction targets. AdaBoost-Thomas hybrid model for breakthrough curve prediction of heavy metal adsorption resins was constructed. The results showed that the AdaBoost model exhibited excellent prediction performance in predicting k Th and q 0, with R 2 of 0.755 and 0.832 on the test set, respectively. The AdaBoost-Thomas model had a great prediction on the fixed-bed breakthrough curve of heavy metal adsorption resins. Compared with traditional methods, the hybrid model could achieve fast and accurate prediction of the fixed-bed breakthrough curve without the support of column experimental data.

Key words: machine learning, resin, heavy metal adsorption, breakthrough curve prediction, hybrid model

中图分类号: