1 |
CHEN Shuning, REN Tengfei, ZHANG Xiaoying,et al. Efficient catalytic ozonation via Mn-loaded C-SiO 2 framework for advanced wastewater treatment:Reactive oxygen species evolution and catalytic mechanism[J]. Science of the Total Environment, 2023, 858:159447. doi: 10.1016/j.scitotenv.2022.159447
|
2 |
MA Nengwei, RU Yifan, WENG Mili,et al. Synergistic mechanism of supported Mn-Ce oxide in catalytic ozonation of nitrofurazone wastewater[J]. Chemosphere, 2022, 308:136192. doi: 10.1016/j.chemosphere.2022.136192
|
3 |
ZHOU Bin, ZHANG Xueqian, WANG Peng,et al. Catalytic performance and insight into the mechanism of CeO 2 nanorod catalysts in phenol ozone oxidation reaction[J]. Ceramics International, 2024, 50(1):394-402. doi: 10.1016/j.ceramint.2023.10.113
|
4 |
HU Rui, LI Jiaying, YU Qiyi,et al. Catalytic ozonation of reverse osmosis concentrate from coking wastewater reuse by surface oxidation over Mn-Ce/ γ-Al 2O 3:Effluent organic matter transformation and its catalytic mechanism[J]. Journal of Hazardous Materials, 2024, 471:134363. doi: 10.1016/j.jhazmat.2024.134363
|
5 |
YUAN Yuchen, LIU Jiadong, GAO Bo,et al. Ozone direct oxidation pretreatment and catalytic oxidation post-treatment coupled with ABMBR for landfill leachate treatment[J]. Science of the Total Environment, 2021, 794:148557. doi: 10.1016/j.scitotenv.2021.148557
|
6 |
JIN Xiaoguang, WU Changyong, FU Liya,et al. Development,dilemma and potential strategies for the application of nanocatalysts in wastewater catalytic ozonation:A review[J]. Journal of Environmental Sciences, 2023, 124:330-349. doi: 10.1016/j.jes.2021.09.041
|
7 |
DONTHU N, KUMAR S, MUKHERJEE D,et al. How to conduct a bibliometric analysis:An overview and guidelines[J]. Journal of Business Research, 2021, 133:285-296. doi: 10.1016/j.jbusres.2021.04.070
|
8 |
PENG Zhibin, HU Zhiyong. A bibliometric analysis of linguistic research on COVID-19[J]. Frontiers in Psychology, 2022, 13:1005487. doi: 10.3389/fpsyg.2022.1005487
|
9 |
KHAW T Y, AMRAN A, TEOH A P. Factors influencing ESG performance:A bibliometric analysis,systematic literature review,and future research directions[J]. Journal of Cleaner Production, 2024, 448:141430. doi: 10.1016/j.jclepro.2024.141430
|
10 |
刘力源,沈旭,王璐,等. 硫酸盐还原菌在废水处理领域发展态势分析[J]. 工业水处理,2022,42(7):33-43.
|
|
LIU Liyuan, SHEN Xu, WANG Lu,et al. Situation analyses of wastewater treatment by sulfate-reducing bacteria[J]. Industrial Water Treatment,2022,42(7):33-43.
|
11 |
赵泽津,熊久强. 文献计量学分析养殖业废水处理技术研究现状[J]. 工业水处理,2024,44(6):69-77.
|
|
ZHAO Zejin, XIONG Jiuqiang. Bibliometric analysis of the current status of research on wastewater treatment technologies in the aquaculture industry[J]. Industrial Water Treatment,2024,44(6):69-77.
|
12 |
陈悦,陈超美,刘则渊,等. CiteSpace知识图谱的方法论功能[J]. 科学学研究,2015,33(2):242-253.
|
|
CHEN Yue, CHEN Chaomei, LIU Zeyuan,et al. The methodology function of CiteSpace mapping knowledge domains[J]. Studies in Science of Science,2015,33(2):242-253.
|
13 |
NAWROCKI J, KASPRZYK-HORDERN B. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B:Environmental, 2010, 99(1/2):27-42. doi: 10.1016/j.apcatb.2010.06.033
|
14 |
WANG Jianlong, BAI Zhiyong. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater[J]. Chemical Engineering Journal, 2017, 312:79-98. doi: 10.1016/j.cej.2016.11.118
|
15 |
BING Jishuai, HU Chun, NIE Yulun,et al. Mechanism of catalytic ozonation in Fe 2O 3/Al 2O 3@SBA-15 aqueous suspension for destruction of ibuprofen[J]. Environmental Science & Technology, 2015, 49(3):1690-1697. doi: 10.1021/es503729h
|
16 |
ZHANG Tao, LI Chunjuan, MA Jun,et al. Surface hydroxyl groups of synthetic α-FeOOH in promoting OH generation from aqueous ozone:Property and activity relationship[J]. Applied Catalysis B:Environmental, 2008, 82(1/2):131-137. doi: 10.1016/j.apcatb.2008.01.008
|
17 |
FARIA P C C,J J M Ó, PEREIRA M F R. Activated carbon catalytic ozonation of oxamic and oxalic acids[J]. Applied Catalysis B:Environmental, 2008, 79(3):237-243. doi: 10.1016/j.apcatb.2007.10.021
|
18 |
ZHU Guoxiang, ZHU Jinguo, JIANG Wenjun,et al. Surface oxygen vacancy induced α-MnO 2 nanofiber for highly efficient ozone elimination[J]. Applied Catalysis B:Environmental, 2017, 209:729-737. doi: 10.1016/j.apcatb.2017.02.068
|
19 |
WANG Jianlong, CHEN Hai. Catalytic ozonation for water and wastewater treatment:Recent advances and perspective[J]. Science of the Total Environment, 2020, 704:135249. doi: 10.1016/j.scitotenv.2019.135249
|
20 |
BAI Haokun, LIANG Lanlan, CAO Peike,et al. MgAl 2O 4 incorporated catalytic ceramic membrane for catalytic ozonation of organic pollutants[J]. Applied Catalysis B:Environmental, 2024, 343:123527. doi: 10.1016/j.apcatb.2023.123527
|
21 |
ZHU Yunqing, LUO Huibang, WANG Tian,et al. Advanced treatment of landfill leachate by catalytic ozonation with MnCeO x / γ-Al 2O 3 catalyst[J]. Surfaces and Interfaces, 2024, 46:104113. doi: 10.1016/j.surfin.2024.104113
|
22 |
LIU Zhilun, ZHAO Lei, LU Shuang,et al. Porous ceramsite catalytic ozonation for the treatment of pulp and paper mill wastewater in a continuous-flow reactor[J]. Chemical Engineering Science, 2024, 288:119855. doi: 10.1016/j.ces.2024.119855
|
23 |
LI Yifan, HAO Shuai, MA Wanli,et al. Persistent organic pollutants in global surface soils:Distributions and fractionations[J]. Environmental Science and Ecotechnology, 2024, 18:100311. doi: 10.1016/j.ese.2023.100311
|
24 |
MISHRA A, KUMARI M,SWATI,et al. Persistent organic pollutants in the environment:Risk assessment,hazards,and mitigation strategies[J]. Bioresource Technology Reports, 2022, 19:101143. doi: 10.1016/j.biteb.2022.101143
|
25 |
POPLI S, BADGUJAR P C, AGARWAL T,et al. Persistent organic pollutants in foods,their interplay with gut microbiota and resultant toxicity[J]. Science of the Total Environment, 2022, 832:155084. doi: 10.1016/j.scitotenv.2022.155084
|
26 |
WEI Zhuo, NIU Shuai, WEI Yi,et al. The role of extracellular polymeric substances(EPS) in chemical-degradation of persistent organic pollutants in soil:A review[J]. Science of the Total Environment, 2024, 912:168877. doi: 10.1016/j.scitotenv.2023.168877
|
27 |
LIN A Y, PANCHANGAM S C, CHANG Chengyi,et al. Removal of perfluorooctanoic acid and perfluorooctane sulfonate via ozonation under alkaline condition[J]. Journal of Hazardous Materials, 2012, 243:272-277. doi: 10.1016/j.jhazmat.2012.10.029
|
28 |
|
|
ZHANG Lanhe, GUO Lin, LI Jianing,et al. Preparation of Fe 2O 3/modified natural zeolite catalyst and mechanism study on catalytic ozonation of 4-chlorophenol[J]. Chemical Industry and Engineering Progress, 2020, 39(8):3086-3094. doi: 10.16085/j.issn.1000-6613.2019-1735
|
29 |
ZHAN Mingxiu, YU Mingfeng, ZHANG Guangxue,et al. Low temperature degradation of polychlorinated dibenzo- p-dioxins and dibenzofurans over a VO x -CeO x /TiO 2 catalyst with addition of ozone[J]. Waste Management, 2018, 76:555-565. doi: 10.1016/j.wasman.2018.02.049
|
30 |
HUANG Weichao, ZHANG Zilong, COLUCCI M,et al. The mixed effect of endocrine-disrupting chemicals on biological age acceleration:Unveiling the mechanism and potential intervention target[J]. Environment International, 2024, 184:108447. doi: 10.1016/j.envint.2024.108447
|
31 |
KEK T, GERŠAK K, VIRANT-KLUN I. Exposure to endocrine disrupting chemicals(bisphenols,parabens,and triclosan) and their associations with preterm birth in humans[J]. Reproductive Toxicology, 2024, 125:108580. doi: 10.1016/j.reprotox.2024.108580
|
32 |
CAO Zhenhua, LONG Yuhan, YANG Peizhen,et al. Catalytic ozonation of bisphenol A by Cu/Mn@ γ-Al 2O 3:Performance evaluation and mechanism insight[J]. Journal of Environmental Management, 2024, 349:119403. doi: 10.1016/j.jenvman.2023.119403
|
33 |
TAK H, CHUNG Y, KIM G Y,et al. Catalytic ozonation with vanadium oxide-doped TiO 2 nanoparticles for the removal of di-2-ethylhexyl phthalate[J]. Chemosphere, 2022, 306:135646. doi: 10.1016/j.chemosphere.2022.135646
|
34 |
WANG Zimeng, MA Hui, ZHANG Chen,et al. Enhanced catalytic ozonation treatment of dibutyl phthalate enabled by porous magnetic Ag-doped ferrospinel MnFe 2O 4 materials:Performance and mechanism[J]. Chemical Engineering Journal, 2018, 354:42-52. doi: 10.1016/j.cej.2018.07.177
|
35 |
MOHSIN M K, MOHAMMED A A. Catalytic ozonation for removal of antibiotic oxy-tetracycline using zinc oxide nanoparticles[J]. Applied Water Science, 2021, 11(1):9. doi: 10.1007/s13201-020-01333-w
|
36 |
ABBAS A, BARKHOUSE A, HACKENBERGER D,et al. Antibiotic resistance:A key microbial survival mechanism that threatens public health[J]. Cell Host & Microbe, 2024, 32(6):837-851. doi: 10.1016/j.chom.2024.05.015
|
37 |
CHENG Dengmiao, XIE Yujia, YU Yanjun,et al. Occurrence and partitioning of antibiotics in the water column and bottom sediments from the intertidal zone in the Bohai Bay,China[J]. Wetlands, 2016, 36(1):167-179. doi: 10.1007/s13157-014-0561-y
|
38 |
IKHLAQ A, NAEEM A, RIZVI O S,et al. Novel Zeolite 5Å-Co-Fe based catalytic ozonation process for the efficient degradation of oxytetracycline in veterinary pharmaceutical wastewater[J]. Cleaner Water, 2024, 1:100017. doi: 10.1016/j.clwat.2024.100017
|
39 |
AGHAEINEJAD-MEYBODI A, EBADI A, SHAFIEI S,et al. Degradation of Fluoxetine using catalytic ozonation in aqueous media in the presence of nano- γ-alumina catalyst:Experimental,modeling and optimization study[J]. Separation and Purification Technology, 2019, 211:551-563. doi: 10.1016/j.seppur.2018.10.020
|
40 |
HOSSAIN M S. People’s attitudes regarding plastics and microplastics pollution:Perceptions,behaviors,and policy implications[J]. Marine Policy, 2024, 165:106219. doi: 10.1016/j.marpol.2024.106219
|
41 |
NAYANATHARA THATHSARANI PILAPITIYA P G C, RATNAYAKE A S. The world of plastic waste:A review[J]. Cleaner Materials, 2024, 11:100220. doi: 10.1016/j.clema.2024.100220
|
42 |
LI Zekang, ZHU Shuxiang, LIU Qian,et al. Polystyrene microplastics cause cardiac fibrosis by activating Wnt/ β-catenin signaling pathway and promoting cardiomyocyte apoptosis in rats[J]. Environmental Pollution, 2020, 265:115025. doi: 10.1016/j.envpol.2020.115025
|
43 |
LI Yu, ZHANG Chuanming, SHEN Chunyang,et al. Enhanced ozonation of polystyrene nanoplastics in water with CeO x @MnO x catalyst[J]. Environmental Research, 2023, 220:115220. doi: 10.1016/j.envres.2023.115220
|