1 |
ZHANG Xue, JIANG Shan, SUN Lixian,et al. Synthesis and structure of a 3D supramolecular layered Bi-MOF and its application in photocatalytic degradation of dyes[J]. Journal of Molecular Structure, 2022, 1270:133895. doi: 10.1016/j.molstruc.2022.133895
|
2 |
WANG Ziwei, ZENG Zhuotong, WANG Han,et al. Bismuth-based metal-organic frameworks and their derivatives:Opportunities and challenges[J]. Coordination Chemistry Reviews, 2021, 439:213902. doi: 10.1016/j.ccr.2021.213902
|
3 |
|
|
WANG Ziwei. The study about the mechanisms of metal-organic frameworks derived Bi 2O 2CO 3/porous carbon nitrid for the photodegradation of wastewater contaminated with antibiotics[D]. Changsha:Hunan University, 2020. doi: 10.1016/j.apcatb.2020.118700
|
4 |
LI Nan, ZHENG Juan, YU Ludan,et al. Green,mildly synthesized bismuth-based MOF for extraction of polar glucocorticoids in environmental water[J]. Journal of Hazardous Materials, 2024, 461:132477. doi: 10.1016/j.jhazmat.2023.132477
|
5 |
庞瑞林,莫创荣,许雪棠,等. Bi2WO6光催化联合过一硫酸盐降解橙黄Ⅱ[J]. 工业水处理,2023,43(4):71-77.
|
|
PANG Ruilin, MO Chuangrong, XU Xuetang,et al. Degradation of orange Ⅱ by Bi2WO6 photocatalyisis combined with peroxymonosulfate[J]. Industrial Water Treatment,2023,43(4):71-77.
|
6 |
DU Zhehua. Research progress of MOF/Bismuth-based semiconductor composites in photocatalytic technology[J]. E3S Web of Conferences, 2023, 385:04034. doi: 10.1051/e3sconf/202338504034
|
7 |
FEYAND M, MUGNAIOLI E, VERMOORTELE F,et al. Automated diffraction tomography for the structure elucidation of twinned,sub-micrometer crystals of a highly porous,catalytically active bismuth metal-organic framework[J]. Angewandte Chemie International Edition, 2012, 51(41):10373-10376. doi: 10.1002/anie.201204963
|
8 |
KÖPPEN M, MEYER V, ÅNGSTRÖM J,et al. Solvent-dependent formation of three new bi-metal-organic frameworks using a tetracarboxylic acid[J]. Crystal Growth & Design, 2018, 18(7):4060-4067. doi: 10.1021/acs.cgd.8b00439
|
9 |
ZHAO Chen, PAN Xi, WANG Zhihua,et al. 1+1>2:A critical review of MOF/bismuth-based semiconductor composites for boosted photocatalysis[J]. Chemical Engineering Journal, 2021, 417:128022. doi: 10.1016/j.cej.2020.128022
|
10 |
AKHAVAN-SIGARI R, ZERAATI M, MOGHADDAM-MANESH M,et al. Porous Cu-MOF nanostructures with anticancer properties prepared by a controllable ultrasound-assisted reverse micelle synthesis of Cu-MOF[J]. BMC Chemistry, 2022, 16(1):10. doi: 10.1186/s13065-022-00804-2
|
11 |
LU Chunmei, LIU Jun, XIAO Kefeng,et al. Microwave enhanced synthesis of MOF-5 and its CO 2 capture ability at moderate temperatures across multiple capture and release cycles[J]. Chemical Engineering Journal, 2010, 156(2):465-470. doi: 10.1016/j.cej.2009.10.067
|
12 |
KÖPPEN M, BEYER O, WUTTKE S,et al. Synthesis,functionalisation and post-synthetic modification of bismuth metal-organic frameworks[J]. Dalton Transactions, 2017, 46(26):8658-8663. doi: 10.1039/c7dt01744h
|
13 |
INGE A K, KÖPPEN M, SU Jie,et al. Unprecedented topological complexity in a metal-organic framework constructed from simple building units[J]. Journal of the American Chemical Society, 2016, 138(6):1970-1976. doi: 10.1021/jacs.5b12484
|
14 |
符瞰,黄思思,赵祯霞. MOFs材料合成及其对有机气体吸附研究进展[J]. 化工新型材料,2013,41(8):4-6.
|
|
FU Kan, HUANG Sisi, ZHAO Zhenxia. Progress of the synthesis of metal organic frameworks materials and its application in organic gas adsorption[J]. New Chemical Materials,2013,41(8):4-6.
|
15 |
SUSLICK K S, CHOE S B, CICHOWLAS A A,et al. Sonochemical synthesis of amorphous iron[J]. Nature, 1991, 353(6343):414-416. doi: 10.1038/353414a0
|
16 |
YING Yulong, KHEZRI B, KOSINA J,et al. Reconstructed bismuth-based metal-organic framework nanofibers for selective CO 2-to-formate conversion:Morphology engineering[J]. ChemSusChem, 2021, 14(16):3402-3412. doi: 10.1002/cssc.202101122
|
17 |
苑兰杰. HKUST-1复合材料的制备及光催化性能研究[D]. 北京:北京化工大学,2022.
|
|
YUAN Lanjie. Preparation and photocatalytic properties of HKUST-1 composites[D]. Beijing:Beijing University of Chemical Technology,2022.
|
18 |
MUELLER U, SCHUBERT M, TEICH F,et al. Metal-organic frameworks:Prospective industrial applications[J]. ChemInform, 2006, 37(23):626-636. doi: 10.1002/chin.200623294
|
19 |
CHENG Xinlei, WU Minxian, XU Yulan,et al. Electrodeposition of Cu x Bi 1- x -MOF for electrochemical reduction of CO 2 [J]. Journal of Solid State Chemistry, 2024, 338:124804. doi: 10.1016/j.jssc.2024.124804
|
20 |
MARTINEZ JOARISTI A, JUAN-ALCAÑIZ J, SERRA-CRESPO P,et al. Electrochemical synthesis of some archetypical Zn 2+,Cu 2+,and Al 3+ metal organic frameworks[J]. Crystal Growth & Design, 2012, 12(7):3489-3498. doi: 10.1021/cg300552w
|
21 |
ZHOU Tiantian, LIU Ju, ZHAN Huanhui,et al. Facile preparation of BiVO 4/Bi-MOF composites for photocatalytic dye removal[J]. Journal of Physics and Chemistry of Solids, 2024, 188:111917. doi: 10.1016/j.jpcs.2024.111917
|
22 |
ZHU Shuairu, LIU Pengfei, WU Mengke,et al. Enhanced photocatalytic performance of BiOBr/NH 2-MIL-125(Ti) composite for dye degradation under visible light[J]. Dalton Transactions, 2016, 45(43):17521-17529. doi: 10.1039/c6dt02912d
|
23 |
汪强,石文楷,孙丽侠,等. 铋基金属有机框架材料的合成及光催化研究进展[J]. 精细石油化工进展,2024,25(2):35-40.
|
|
WANG Qiang, SHI Wenkai, SUN Lixia,et al. Progress in synthesis and photocatalysis of bismuth-based metal-organic framework materials[J]. Advances in Fine Petrochemicals,2024,25(2):35-40.
|
24 |
ZHAO Chen, WANG Zhihua, LI Xiang,et al. Facile fabrication of BUC-21/Bi 24O 31Br 10 composites for enhanced photocatalytic Cr(Ⅵ) reduction under white light[J]. Chemical Engineering Journal, 2020, 389:123431. doi: 10.1016/j.cej.2019.123431
|
25 |
LI Hua, ZHAO Chen, LI Xia,et al. Boosted photocatalytic Cr(Ⅵ) reduction over Z-scheme MIL-53(Fe)/Bi 12O 17C l2 composites under white light[J]. Journal of Alloys and Compounds, 2020, 844:156147. doi: 10.1016/j.jallcom.2020.156147
|
26 |
YI Zhiguo, YE Jinhua, KIKUGAWA N,et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation[J]. Nature Materials, 2010, 9(7):559-564. doi: 10.1038/nmat2780
|
27 |
JI Yufeng, ZOU Congyang, WANG Yong,et al. Preparation of a novel Ag 3PO 4/Bi-MOF heterojunction photocatalyst for the degradation of organic pollutants under visible light irradiation[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2024, 34(12):5791-5804. doi: 10.1007/s10904-024-03206-0
|
28 |
代佳汐,姜建辉,韩宇凡,等. Cd(OH)2/BiOCl复合材料的制备及其光催化性能[J]. 工业水处理,2024,44(9):136-142.
|
|
DAI Jiaxi, JIANG Jianhui, HAN Yufan,et al. Preparation and photocatalytic performance of Cd(OH)2/BiOCl composite materials[J]. Industrial Water Treatment,2024,44(9):136-142.
|
29 |
WANG Huanli, ZHANG Lisha, CHEN Zhigang,et al. Semiconductor heterojunction photocatalysts:Design,construction,and photocatalytic performances[J]. Chemical Society Reviews, 2014, 43(15):5234-5244. doi: 10.1039/c4cs00126e
|
30 |
CUI Lifeng, ZOU Xuhui, LIU Yanan,et al. Dramatic enhancement of photocatalytic H 2 evolution over hydrolyzed MOF-5 coupled Zn 0.2Cd 0.8S heterojunction[J]. Journal of Colloid and Interface Science, 2020, 577:233-241. doi: 10.1016/j.jcis.2020.05.023
|
31 |
王冠芝. 系列铋基金属有机框架材料的制备、表征及其光催化性能的研究[D]. 济南:山东大学,2016.
|
|
WANG Guanzhi. Synthesis, characterization and photocatalytic properties of a series of bismuth-based metal-organic frameworks[D]. Jiʼnan:Shandong University,2016.
|
32 |
ZENG Le, GUO Xiangyang, HE Cheng,et al. Metal-organic frameworks:Versatile materials for heterogeneous photocatalysis[J]. Acs Catalysis, 2016, 6(11):7935-7947. doi: 10.1021/acscatal.6b02228
|
33 |
HE Rongan, XU Difa, CHENG Bei,et al. Review on nanoscale Bi-based photocatalysts[J]. Nanoscale Horizons, 2018, 3(5):464-504. doi: 10.1039/c8nh00062j
|
34 |
YU Hanbo, JIANG Longbo, WANG Hou,et al. Modulation of Bi 2MoO 6-based materials for photocatalytic water splitting and environmental application:A critical review[J]. Small, 2019, 15(23):1901008. doi: 10.1002/smll.201970122
|
35 |
WANG Guanzhi, SUN Qilong, LIU Yuanyuan,et al. A bismuth-based metal-organic framework as an efficient visible-light-driven photocatalyst[J]. Chemistry: A European Journal, 2015, 21(6):2364-2367. doi: 10.1002/chem.201405047
|
36 |
TIAN Hailin, GU Yan, ZHOU Houle,et al. BiOBr@UiO-66 photocatalysts with abundant activated sites for the enhanced photodegradation of rhodamine B under visible light irradiation[J]. Materials Science and Engineering:B, 2021, 271:115297. doi: 10.1016/j.mseb.2021.115297
|
37 |
雷龙飞. 新型铋基金属有机框架(MOFs)材料的设计、合成及其光催化性能研究[D]. 济南:山东大学,2023.
|
|
LEI Longfei. Design,synthesis and photocatalytic performance of novel bismuth based metal-organic frameworks(MOFs) materials[D]. Jiʼnan:Shandong University,2023.
|
38 |
TANG Liang, Zhongqian LÜ, XUE Yuancheng,et al. MIL-53(Fe) incorporated in the lamellar BiOBr:Promoting the visible-light catalytic capability on the degradation of rhodamine B and carbamazepine[J]. Chemical Engineering Journal, 2019, 374:975-982. doi: 10.1016/j.cej.2019.06.019
|
39 |
NGUYEN V H, NGUYEN T D, VAN NGUYEN T. Microwave-assisted solvothermal synthesis and photocatalytic activity of bismuth(Ⅲ) based metal-organic framework[J]. Topics in Catalysis, 2020, 63(11):1109-1120. doi: 10.1007/s11244-020-01271-6
|
40 |
ZHANG Benyin, XU Hao, WANG Mingming,et al. Bismuth(Ⅲ)- based metal-organic framework for tetracycline removal via adsorption and visible light catalysis processes[J]. Journal of Environmental Chemical Engineering, 2022, 10(5):108469. doi: 10.1016/j.jece.2022.108469
|
41 |
蒋实. 金属有机骨架/无机半导体复合材料的制备及其可见光下催化降解双氯芬酸钠的研究[D]. 武汉:中南民族大学,2020.
|
|
JIANG Shi. Preparation of metal-organic framework/inorganic semiconductor composites and its catalytic degradation of diclofenac sodium under visible light[D]. Wuhan:South-central University for Nationalities,2020.
|
42 |
綦毓文,魏砾宏,石冬妮,等. UiO-66/BiVO4复合光催化剂的制备及其对四环素的光解[J]. 中国环境科学,2021,41(3):1162-1171.
|
|
QI Yuwen, WEI Lihong, SHI Dongni,et al. Preparation of UiO-66/BiVO4 composite photocatalyst and its photodegradation of tetracycline[J]. China Environmental Science,2021,41(3):1162-1171.
|
43 |
HE Xiaohui, CHANG Chun, YANG Liping,et al. Construction of bismuth based MOF for efficient removal of sodium diclofenac via adsorption and photocatalysis[J]. Journal of Environmental Sciences, 2025, 150:14-24. doi: 10.1016/j.jes.2024.03.018
|
44 |
WANG Ziwei, WANG Han, ZENG Zhuotong,et al. Metal-organic frameworks derived Bi 2O 2CO 3/porous carbon nitride:A nanosized Z-scheme systems with enhanced photocatalytic activity[J]. Applied Catalysis B:Environmental, 2020, 267:118700. doi: 10.1016/j.apcatb.2020.118700
|
45 |
GU Jingwen, GUO Ruitang, MIAO Yufang,et al. Construction of full spectrum-driven Cs x WO 3/g-C 3N 4 heterojunction catalyst for efficient photocatalytic CO 2 reduction[J]. Applied Surface Science, 2021, 540:148316. doi: 10.1016/j.apsusc.2020.148316
|
46 |
LIU Dandan, HUA Jinghao, ZHANG Weijie,et al. Efficient photocatalytic CO 2 reduction achieved by constructing Bi 4O 5Br 2/Bi-MOF Z-scheme heterojunction[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2024, 695:134101. doi: 10.1016/j.colsurfa.2024.134101
|
47 |
SHI Haolan, XU Mengjiao, LENG Changyu,et al. In situ construction of S-scheme heterojunctions between BiOCl and Bi-MOF for enhanced photocatalytic CO 2 reduction and pollutant degradation[J]. Journal of Colloid and Interface Science, 2025, 680:1067-1078. doi: 10.1016/j.jcis.2024.11.077
|
48 |
LIU Yiqiu, ZHOU Yi, TANG Qijun,et al. A direct Z-scheme Bi 2WO 6/NH 2-UiO-66 nanocomposite as an efficient visible-light-driven photocatalyst for NO removal[J]. RSC Advances, 2020, 10(3):1757-1768. doi: 10.1039/c9ra09270f
|
49 |
XUE Yao, WANG Peifang, WANG Chao,et al. Efficient degradation of atrazine by BiOBr/UiO-66 composite photocatalyst under visible light irradiation:Environmental factors,mechanisms and degradation pathways[J]. Chemosphere, 2018, 203:497-505. doi: 10.1016/j.chemosphere.2018.04.017
|
50 |
ZHANG Shiyu, DU Meng, KUANG Junyan,et al. Surface-defect-rich mesoporous NH 2-MIL-125(Ti)@Bi 2MoO 6 core-shell heterojunction with improved charge separation and enhanced visible-light-driven photocatalytic performance[J]. Journal of Colloid and Interface Science, 2019, 554:324-334. doi: 10.1016/j.jcis.2019.07.021
|