| [1] |
BERG B, MEENTEMEYER V. Litter quality in a North European transect versus carbon storage potential[J]. Plant and Soil, 2002, 242(1):83-92. doi: 10.1023/a:1019637807021
|
| [2] |
CHIMNEY M J, PIETRO K C. Decomposition of macrophyte litter in a subtropical constructed wetland in South Florida(USA)[J]. Ecological Engineering, 2006, 27(4):301-321. doi: 10.1016/j.ecoleng.2006.05.016
|
| [3] |
宋振阳,孙志高,贺攀霏,等. 氮负荷增强对闽江河口芦苇湿地表层土壤磷赋存形态动态变化的影响[J]. 环境科学学报,2023,43(11):314-327.
|
|
SONG Zhenyang, SUN Zhigao, HE Panfei,et al. Effects of enhanced nitrogen load on dynamic variations of phosphorus fractions in topsoil of Phragmites australis marsh in the Minjiang estuary[J]. Acta Scientiae Circumstantiae,2023,43(11):314-327.
|
| [4] |
赵月兰,李琳,刘吉平,等. 向海国家级自然保护区中人工恢复的退化芦苇沼泽的土壤质量评价[J]. 湿地科学,2023,21(4):614-618.
|
|
ZHAO Yuelan, LI Lin, LIU Jiping,et al. Soil quality assessment of artificially restored degraded reed marshes in Xianghai national nature reserve[J]. Wetland Science,2023,21(4):614-618.
|
| [5] |
GÜSEWELL S. Management of Phragmites australis in Swiss fen meadows by mowing in early summer[J]. Wetlands Ecology and Management, 2003, 11(6):433-445. doi: 10.1023/b:wetl.0000007197.85070.58
|
| [6] |
PATUZZI F, MIMMO T, CESCO S,et al. Common reeds( Phragmites australis) as sustainable energy source:Experimental and modelling analysis of torrefaction and pyrolysis processes[J]. GCB Bioenergy, 2013, 5(4):367-374. doi: 10.1111/gcbb.12000
|
| [7] |
GIRGIS B S, YUNIS S S, SOLIMAN A M. Characteristics of activated carbon from peanut hulls in relation to conditions of preparation[J]. Materials Letters, 2002, 57(1):164-172. doi: 10.1016/s0167-577x(02)00724-3
|
| [8] |
WANG Liuwei, DENG Jiayu, YANG Xiaodong,et al. Role of biochar toward carbon neutrality[J]. Carbon Research, 2023, 2(1):2. doi: 10.1007/s44246-023-00035-7
|
| [9] |
AMOAH-ANTWI C, KWIATKOWSKA-MALINA J, THORNTON S F,et al. Restoration of soil quality using biochar and brown coal waste:A review[J]. Science of the Total Environment, 2020, 722:137852. doi: 10.1016/j.scitotenv.2020.137852
|
| [10] |
吴钊峰,沈超,孙启花,等. 生物质碳材料的制备与若干应用研究新进展[J]. 北京工业大学学报,2023,49(11):1232-1250.
|
|
WU Zhaofeng, SHEN Chao, SUN Qihua,et al. New progress in the preparation and application of biomass carbon materials[J]. Journal of Beijing University of Technology,2023,49(11):1232-1250.
|
| [11] |
贾双珠,杨光黎,莫江业,等. 生物质碳材料的制备及应用[J]. 精细与专用化学品,2023,31(9):9-13.
|
|
JIA Shuangzhu, YANG Guangli, MO Jiangye,et al. Preparation and application of biomass carbon materials[J]. Fine and Specialty Chemicals,2023,31(9):9-13.
|
| [12] |
MARRIS E. Putting the carbon back:Black is the new green[J]. Nature, 2006, 442(7103):624-626. doi: 10.1038/442624a
|
| [13] |
庞亚辉,蒋新元,唐玉莲,等. 高比表面芦苇活性炭的制备及其对亚甲基蓝的吸附性能研究[J]. 应用化工,2023,52(10):2836-2840.
|
|
PANG Yahui, JIANG Xinyuan, TANG Yulian,et al. Preparation of reed activated carbon with high specific surface area and its adsorption performance for methylene blue[J]. Applied Chemical Industry,2023,52(10):2836-2840.
|
| [14] |
傅成锴,郭千里,梁成博,等. 高酸度芦苇活性炭的制备及其吸附性能[J]. 农业资源与环境学报,2017,34(2):175-181.
|
|
FU Chengkai, GUO Qianli, LIANG Chengbo,et al. Preparation and adsorption performances of Phragmites australis activated carbon with high acidity[J]. Journal of Agricultural Resources and Environment,2017,34(2):175-181.
|
| [15] |
胡立鹃,吴峰,彭善枝,等. 生物质活性炭的制备及应用进展[J]. 化学通报,2016,79(3):205-212.
|
|
HU Lijuan, WU Feng, PENG Shanzhi,et al. Progress in preparation and utilization of biomass-based activated carbons[J]. Chemistry,2016,79(3):205-212.
|
| [16] |
田学坤,王霞,苏凯,等. 生物质材料炭化的研究进展及其应用展望[J]. 工程科学学报,2023,45(12):2026-2036.
|
|
TIAN Xuekun, WANG Xia, SU Kai,et al. Research progress and application prospects of the carbonization of biomass materials[J]. Chinese Journal of Engineering,2023,45(12):2026-2036.
|
| [17] |
PAN Jiamin, PANG Zijun, WEI Tuo,et al. Functionalization process of coking sludge:Biochar immobilizing with Fe/Co to enhance the wastewater treatment of ozone[J]. Journal of Water Process Engineering, 2023, 51:103434. doi: 10.1016/j.jwpe.2022.103434
|
| [18] |
胡映明,王盼新,付丽亚,等. 不同制备方法对铝基催化剂臭氧催化氧化的效果研究[J]. 环境科学研究,2022,35(11):2559-2567.
|
|
HU Yingming, WANG Panxin, FU Liya,et al. Effects of different preparation methods on catalytic ozonation of Alumina-based catalysts[J]. Research of Environmental Sciences,2022,35(11):2559-2567.
|
| [19] |
WANG Jingjing, YUAN Shijie, DAI Xiaohu,et al. Application,mechanism and prospects of Fe-based/Fe-biochar catalysts in heterogenous ozonation process:A review[J]. Chemosphere, 2023, 319:138018. doi: 10.1016/j.chemosphere.2023.138018
|
| [20] |
WANG Junkai, FU Liya, CHEN Xingxing,et al. Catalytic ozonation promoted by Mn-doped sludge-based catalyst treating refractory industrial wastewater[J]. Separation and Purification Technology, 2025, 354:128676. doi: 10.1016/j.seppur.2024.128676
|
| [21] |
LIU Na, LI Yinhui, ZHANG Minggu,et al. Efficient adsorption of short-chain perfluoroalkyl substances by pristine and Fe/Cu-loaded reed straw biochars[J]. Science of the Total Environment, 2024, 946:174223. doi: 10.1016/j.scitotenv.2024.174223
|
| [22] |
FENG Hanxiao, YANG Fen, WEI Chaoyang. Developing goethite modified reed-straw biochar for remediation of metal(loids) co-contamination[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2024, 692:133942. doi: 10.1016/j.colsurfa.2024.133942
|
| [23] |
刘斌,顾洁,屠扬艳,等. 梧桐叶活性炭对不同极性酚类物质的吸附[J]. 环境科学研究,2014,27(1):92-98.
|
|
LIU Bin, GU Jie, TU Yangyan,et al. Adsorption property of activated carbon from leaves of phoenix tree on different polarity phenols[J]. Research of Environmental Sciences,2014,27(1):92-98.
|
| [24] |
WANG Jianlong, WANG Shizong, HU Chengzhi. Advanced treatment of coking wastewater:Recent advances and prospects[J]. Chemosphere, 2024, 349:140923. doi: 10.1016/j.chemosphere.2023.140923
|
| [25] |
LIU Yongjun, LIU Jing, ZHANG Aining,et al. Treatment effects and genotoxicity relevance of the toxic organic pollutants in semi-coking wastewater by combined treatment process[J]. Environmental Pollution, 2017, 220:13-19. doi: 10.1016/j.envpol.2016.04.095
|
| [26] |
刘显清,李国保,吴海珍,等. 酚类化合物在焦化废水处理过程中的降解与转移[J]. 环境化学,2012,31(10):1487-1493.
|
|
LIU Xianqing, LI Guobao, WU Haizhen,et al. The degradation and transfer of phenolic compounds during the treatment processes of coking wastewater[J]. Environmental Chemistry,2012,31(10):1487-1493.
|
| [27] |
WANG Jianlong, BAI Zhiyong. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater[J]. Chemical Engineering Journal, 2017, 312:79-98. doi: 10.1016/j.cej.2016.11.118
|
| [28] |
HE Xinze, LUO Yunxia, YI Yang,et al. Peroxymonosulfate activation by Fe-Mn co-doped biochar for carbamazepine degradation[J]. RSC Advances, 2024, 14(2):1141-1149. doi: 10.1039/d3ra06065a
|
| [29] |
LU Jun, WEN Zhipan, ZHANG Yalei,et al. New insights on nanostructure of ordered mesoporous FeMn bimetal oxides(OMFMs) by a novel inverse micelle method and their superior arsenic sequestration performance:Effect of calcination temperature and role of Fe/Mn oxides[J]. Science of the Total Environment, 2021, 762:143163. doi: 10.1016/j.scitotenv.2020.143163
|
| [30] |
FAN Yu, WAN Chunli, ZHAO Xiaomeng,et al. Ce-doped LaMnO 3- δ perovskite as an efficient ozonation catalyst for the degradation of high-concentration phenol wastewater[J]. Journal of Environmental Chemical Engineering, 2024, 12(3):112761. doi: 10.1016/j.jece.2024.112761
|
| [31] |
ZHANG Jing, YANG Lihui, LIU Chun,et al. Efficient degradation of tetracycline hydrochloride wastewater by microbubble catalytic ozonation with sludge biochar-loaded layered polymetallic hydroxide[J]. Separation and Purification Technology, 2024, 340:126767. doi: 10.1016/j.seppur.2024.126767
|
| [32] |
TIAN Shiqi, QI Jingyao, WANG Yunpeng,et al. Heterogeneous catalytic ozonation of atrazine with Mn-loaded and Fe-loaded biochar[J]. Water Research, 2021, 193:116860. doi: 10.1016/j.watres.2021.116860
|
| [33] |
CHENG Yizhen, WANG Binyuan, YAN Pengwei,et al. In-situ formation of surface reactive oxygen species on defective sites over N-doped biochar in catalytic ozonation[J]. Chemical Engineering Journal, 2023, 454:140232. doi: 10.1016/j.cej.2022.140232
|
| [34] |
NIDHEESH P V, GOPINATH A, RANJITH N,et al. Potential role of biochar in advanced oxidation processes:A sustainable approach[J]. Chemical Engineering Journal, 2021, 405:126582. doi: 10.1016/j.cej.2020.126582
|
| [35] |
SUN Ju, LIU Xia, ZHANG Fengsong,et al. Insight into the mechanism of adsorption of phenol and resorcinol on activated carbons with different oxidation degrees[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 563:22-30. doi: 10.1016/j.colsurfa.2018.11.042
|
| [36] |
FU Haichao, MA Shuanglong, ZHAO Peng,et al. Activation of peroxymonosulfate by graphitized hierarchical porous biochar and MnFe 2O 4 magnetic nanoarchitecture for organic pollutants degradation:Structure dependence and mechanism[J]. Chemical Engineering Journal, 2019, 360:157-170. doi: 10.1016/j.cej.2018.11.207
|
| [37] |
周丽丽,管卫兵,彭自然,等. 运用响应面法优化芦苇基生物炭活化工艺[J]. 上海海洋大学学报,2019,28(6):911-920.
|
|
ZHOU Lili, GUAN Weibing, PENG Ziran,et al. Optimization of reed-based biochar activation process by response surface methodology[J]. Journal of Shanghai Ocean University,2019,28(6):911-920.
|
| [38] |
CHEN Chunmao, YAN Xin, XU Yingying,et al. Activated petroleum waste sludge biochar for efficient catalytic ozonation of refinery wastewater[J]. Science of the Total Environment, 2019, 651:2631-2640. doi: 10.1016/j.scitotenv.2018.10.131
|
| [39] |
秦志凯,付丽亚,李敏,等. 焙烧再生废旧臭氧催化剂处理石化废水生化出水[J]. 环境科学研究,2023,36(4):724-733.
|
|
QIN Zhikai, FU Liya, LI Min,et al. Roasting and regeneration of spent ozone catalyst for treatment of petrochemical wastewater biochemical effluent[J]. Research of Environmental Sciences,2023,36(4):724-733.
|
| [40] |
AN Wenhui, LI Xufang, MA Jieting,et al. Advanced treatment of industrial wastewater by ozonation with iron-based monolithic catalyst packing:From mechanism to application[J]. Water Research, 2023, 235:119860. doi: 10.1016/j.watres.2023.119860
|