| [1] |
PALANISAMY G, JUNG H Y, SADHASIVAM T,et al. A comprehensive review on microbial fuel cell technologies:Processes,utilization,and advanced developments in electrodes and membranes[J]. Journal of Cleaner Production, 2019, 221:598-621. doi: 10.1016/j.jclepro.2019.02.172
|
| [2] |
LOGAN B E, ROSSI R, RAGAB A,et al. Electroactive microorganisms in bioelectrochemical systems[J]. Nature Reviews. Microbiology, 2019, 17(5):307-319. doi: 10.1038/s41579-019-0173-x
|
| [3] |
KAUR R, MARWAHA A, CHHABRA V A,et al. Recent developments on functional nanomaterial-based electrodes for microbial fuel cells[J]. Renewable and Sustainable Energy Reviews, 2020, 119:109551. doi: 10.1016/j.rser.2019.109551
|
| [4] |
|
|
REN Yuying, LIU Yuxiang. Research progress on anode materials in microbial fuel cells[J]. Industrial Water Treatment, 2020, 40(3):17-22. doi: 10.11894/iwt.2019-0220
|
| [5] |
ZHOU Minghua, CHI Meiling, LUO Jianmei,et al. An overview of electrode materials in microbial fuel cells[J]. Journal of Power Sources, 2011, 196(10):4427-4435. doi: 10.1016/j.jpowsour.2011.01.012
|
| [6] |
HOU Junxian, LIU Zhongliang, YANG Siqi,et al. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells[J]. Journal of Power Sources, 2014, 258:204-209. doi: 10.1016/j.jpowsour.2014.02.035
|
| [7] |
李桂莲,陆闽侨,侯月腾,等. 铁基纳米粒子改性碳布复合材料的制备及其在微生物燃料电池阳极中的应用[J]. 分析化学,2024,52(4):566-577.
|
|
LI Guilian, LU Minqiao, HOU Yueteng,et al. Preparation of iron-based nanoparticle-modified carbon cloth composites and their application in microbial fuel cells anodes[J]. Chinese Journal of Analytical Chemistry,2024,52(4):566-577.
|
| [8] |
ZHAO Shuai, WANG Xu, WANG Qiutong,et al. Application of biochar in microbial fuel cells:Characteristic performances,electron-transfer mechanism,and environmental and economic assessments[J]. Ecotoxicology and Environmental Safety, 2023, 267:115643. doi: 10.1016/j.ecoenv.2023.115643
|
| [9] |
YUAN Yong, ZHOU Shungui, LIU Yi,et al. Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells[J]. Environmental Science & Technology, 2013, 47(24):14525-14532. doi: 10.1021/es404163g
|
| [10] |
CHEN Shuiliang, LIU Qin, HE Guanghua,et al. Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells[J]. Journal of Materials Chemistry, 2012, 22(35):18609-18613. doi: 10.1039/c2jm33733a
|
| [11] |
KARTHIKEYAN R, WANG Bin, XUAN Jin,et al. Interfacial electron transfer and bioelectrocatalysis of carbonized plant material as effective anode of microbial fuel cell[J]. Electrochimica Acta, 2015, 157:314-323. doi: 10.1016/j.electacta.2015.01.029
|
| [12] |
CHEN Qin, PU Wenhong, HOU Huijie,et al. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells[J]. Bioresource Technology, 2018, 249:567-573. doi: 10.1016/j.biortech.2017.09.086
|
| [13] |
BATAILLOU G, LEE C, MONNIER V,et al. Cedar wood-based biochar:Properties,characterization,and applications as anodes in microbial fuel cell[J]. Applied Biochemistry and Biotechnology, 2022, 194(9):4169-4186. doi: 10.1007/s12010-022-03997-3
|
| [14] |
庞典育,蔡腾,黄满红,等. 天然生物质制备高性能微生物燃料电池阳极研究[J]. 水处理技术,2020,46(11):51-57.
|
|
PANG Dianyu, CAI Teng, HUANG Manhong,et al. Study on fabrication of high performance microbial fuel cells anode with natural biomass[J]. Technology of Water Treatment,2020,46(11):51-57.
|
| [15] |
YU Yangyang, GUO Chunxian, YONG Yangchun,et al. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode[J]. Chemosphere, 2015, 140:26-33. doi: 10.1016/j.chemosphere.2014.09.070
|
| [16] |
CHENG Shaoan, LOGAN B E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells[J]. Electrochemistry Communications, 2007, 9(3):492-496. doi: 10.1016/j.elecom.2006.10.023
|
| [17] |
ZHU Nengwu, CHEN Xi, ZHANG Ting,et al. Improved performance of membrane free single-chamber air-cathode microbial fuel cells with nitric acid and ethylenediamine surface modified activated carbon fiber felt anodes[J]. Bioresource Technology, 2011, 102(1):422-426. doi: 10.1016/j.biortech.2010.06.046
|
| [18] |
杨又鸣,王焦飞,张玉洁,等. 氮掺杂技术在碳基材料中的应用进展[J]. 环境化学,2025,44(1):41-52.
|
|
YANG Youming, WANG Jiaofei, ZHANG Yujie,et al. Application Progress of nitrogen doping technology in carbon-based materials[J]. Environmental Chemistry,2025,44(1):41-52.
|
| [19] |
HE Yanrong, XIAO Xiang, LI Wenwei,et al. Enhanced electricity production from microbial fuel cells with plasma-modified carbon paper anode[J]. Physical Chemistry Chemical Physics, 2012, 14(28):9966-9971. doi: 10.1039/c2cp40873b
|
| [20] |
朱晓,张立强,张梦泽,等. 水热法制备氮掺杂多孔炭及其在气体吸附/电化学储能中的应用[J]. 燃烧科学与技术,2020,26(5):413-422.
|
|
ZHU Xiao, ZHANG Liqiang, ZHANG Mengze,et al. Preparation of N-doped porous carbon by hydrothermal method and its application in gas adsorption/electrochemical energy storage[J]. Journal of Combustion Science and Technology,2020,26(5):413-422.
|
| [21] |
YEON J S, PARK S H,SUK J,et al. Confinement of sulfur in the micropores of honeycomb-like carbon derived from lignin for lithium-sulfur battery cathode[J]. Chemical Engineering Journal, 2020, 382:122946. doi: 10.1016/j.cej.2019.122946
|
| [22] |
LI Zhengjie, Wei LÜ, ZHANG Chen,et al. A sheet-like porous carbon for high-rate supercapacitors produced by the carbonization of an eggplant[J]. Carbon, 2015, 92:11-14. doi: 10.1016/j.carbon.2015.02.054
|
| [23] |
ZHAO Cuijiao, ZHANG Shengbo, SUN Na,et al. Converting eggplant biomass into multifunctional porous carbon electrodes for self-powered capacitive deionization[J]. Environmental Science:Water Research & Technology, 2019, 5(6):1054-1063. doi: 10.1039/c9ew00239a
|
| [24] |
ZHA Zhengtai, ZHANG Zhi, XIANG Ping,et al. One-step preparation of eggplant-derived hierarchical porous graphitic biochar as efficient oxygen reduction catalyst in microbial fuel cells[J]. RSC Advances, 2021, 11(2):1077-1085. doi: 10.1039/d0ra09976g
|
| [25] |
LOGAN B, CHENG Shaoan, WATSON V,et al. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells[J]. Environmental Science & Technology, 2007, 41(9):3341-3346. doi: 10.1021/es062644y
|
| [26] |
BOKULICH N A, SUBRAMANIAN S, FAITH J J,et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nature Methods, 2013, 10(1):57-59. doi: 10.1038/nmeth.2276
|
| [27] |
ZOU Kaixiang, DENG Yuanfu, CHEN Juping,et al. Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors[J]. Journal of Power Sources, 2018, 378:579-588. doi: 10.1016/j.jpowsour.2017.12.081
|
| [28] |
WEI Jing, HU Yaoxin, LIANG Yan,et al. Nitrogen-doped nanoporous carbon/graphene nano-sandwiches:Synthesis and application for efficient oxygen reduction[J]. Advanced Functional Materials, 2015, 25(36):5768-5777. doi: 10.1002/adfm.201502311
|
| [29] |
WANG Zhijuan, CAO Xiehong, PING Jianfeng,et al. Electrochemical doping of three-dimensional graphene networks used as efficient electrocatalysts for oxygen reduction reaction[J]. Nanoscale, 2015, 7(21):9394-9398. doi: 10.1039/c4nr06631f
|
| [30] |
ZHANG Lijuan, HE Weihua, YANG Junchuan,et al. Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells[J]. Biosensors and Bioelectronics, 2018, 122:217-223. doi: 10.1016/j.bios.2018.09.005
|
| [31] |
FRICKE K, HARNISCH F, SCHRÖDER U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells[J]. Energy & Environmental Science, 2008, 1(1):144-147. doi: 10.1039/b802363h
|
| [32] |
杨明,陈国美,倪自丰,等. 40Cr基体表面GO/BTESPT硅烷复合膜的制备和性能表征[J]. 电镀与精饰,2020,42(9):16-23.
|
|
YANG Ming, CHEN Guomei, NI Zifeng,et al. Preparation and characterization of GO/BTESPT silane composite film on 40Cr substrate[J]. Plating & Finishing,2020,42(9):16-23.
|
| [33] |
PUIG A, PEREZ-MUNUERA I, CARCEL J A,et al. Moisture loss kinetics and microstructural changes in eggplant( Solanum melongena L.) during conventional and ultrasonically assisted convective drying[J]. Food and Bioproducts Processing, 2012, 90(4):624-632. doi: 10.1016/j.fbp.2012.07.001
|
| [34] |
WANG Ruiwen, LIU Da, YAN Mei,et al. Three-dimensional high performance free-standing anode by one-step carbonization of pinecone in microbial fuel cells[J]. Bioresource Technology, 2019, 292:121956. doi: 10.1016/j.biortech.2019.121956
|
| [35] |
WANG Junjie, TIAN Pei, LI Kexun,et al. The excellent performance of nest-like oxygen-deficient Cu 1.5Mn 1.5O 4 applied in activated carbon air-cathode microbial fuel cell[J]. Bioresource Technology, 2016, 222:107-11. doi: 10.1016/j.biortech.2016.09.126
|
| [36] |
王紫嫙,王婕,王兴源,等. 氮掺杂多孔碳材料阳极制备及其在微生物燃料电池上的应用[J]. 环境化学,2024,43(2):614-622.
|
|
WANG Zixuan, WANG Jie, WANG Xingyuan,et al. Preparation of nitrogen-doped porous carbon anode and its application in microbial fuel cells[J]. Environmental Chemistry,2024,43(2):614-622.
|
| [37] |
CARMONA-MARTINEZ A A, HARNISCH F, FITZGERALD L A,et al. Cyclic voltammetric analysis of the electron transfer of Shewanella oneidensis MR-1 and nanofilament and cytochrome knock-out mutants[J]. Bioelectrochemistry, 2011, 81(2):74-80. doi: 10.1016/j.bioelechem.2011.02.006
|
| [38] |
HU Meihua, LI Xin, XIONG Juan,et al. Nano-Fe 3C@PGC as a novel low-cost anode electrocatalyst for superior performance microbial fuel cells[J]. Biosensors and Bioelectronics, 2019, 142:111594. doi: 10.1016/j.bios.2019.111594
|
| [39] |
WANG Qinghong, LIANG Jiahao, ZHANG Simin,et al. Characteristics of bacterial populations in an industrial scale petrochemical wastewater treatment plant:Composition,function and their association with environmental factors[J]. Environmental Research, 2020, 189:109939. doi: 10.1016/j.envres.2020.109939
|
| [40] |
LOGAN B E. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nature Reviews(Microbiology), 2009, 7(5):375-381. doi: 10.1038/nrmicro2113
|
| [41] |
SONG Xia, YU Deshuang, QIU Yanling,et al. Unexpected phosphorous removal in a Candidatus_Competibacter and Defluviicoccus dominated reactor[J]. Bioresource Technology, 2022, 345:126540. doi: 10.1016/j.biortech.2021.126540
|