| [1] |
SAHU A, POLER J C. Removal and degradation of dyes from textile industry wastewater:Benchmarking recent advancements,toxicity assessment and cost analysis of treatment processes[J]. Journal of Environmental Chemical Engineering, 2024, 12(5):113754. doi: 10.1016/j.jece.2024.113754
|
| [2] |
沈琳玉,沈丹红,陈康,等. 高效降解环境新污染物四环素的复合光催化剂:从材料设计到降解机制[J]. 环境化学,2023,42(9):2859-2875.
|
|
SHEN Linyu, SHEN Danhong, CHEN Kang,et al. Composite photocatalysts for efficient degradation of emerging contaminant tetracyclines:From material design to degradation mechanisms[J]. Environmental Chemistry,2023,42(9):2859-2875.
|
| [3] |
VERMA N, CHUNDAWAT T S, CHANDRA H,et al. An efficient time reductive photocatalytic degradation of carcinogenic dyes by TiO 2-GO nanocomposite[J]. Materials Research Bulletin, 2023, 158:112043. doi: 10.1016/j.materresbull.2022.112043
|
| [4] |
XU Qiao, DU Jiaxin, SU Xiuping,et al. Highly porous carbon with rich inherent groups for ultrahigh adsorption of organic dyes from wastewater[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2024, 703:135288. doi: 10.1016/j.colsurfa.2024.135288
|
| [5] |
FENG Xiaoquan, PENG Donglai, ZHU Junyong,et al. Recent advances of loose nanofiltration membranes for dye/salt separation[J]. Separation and Purification Technology, 2022, 285:120228. doi: 10.1016/j.seppur.2021.120228
|
| [6] |
LI Song, JIANG Chenchen, ZHANG Yicheng,et al. Synergistic effect of N doping and oxygen vacancies over TiO 2 nanosheets with enhanced photocatalytic removal of tetracycline[J]. Catalysis Today, 2024, 440:114830. doi: 10.1016/j.cattod.2024.114830
|
| [7] |
SINGH A, PAL D B, MOHAMMAD A,et al. Biological remediation technologies for dyes and heavy metals in wastewater treatment:New insight[J]. Bioresource Technology,2022,343:126154.
|
| [8] |
郎明娇,杨朝美,曾广勇. 光催化膜的构筑及其在废水处理中的研究进展[J]. 工业水处理,2024,44(7):47-56.
|
|
LANG Mingjiao, YANG Zhaomei, ZENG Guangyong. Construction of photocatalytic membrane separation materials and its research progress in wastewater treatment[J]. Industrial Water Treatment,2024,44(7):47-56.
|
| [9] |
WANG Dongdong, HUANG Likun, MIAO Xinyi,et al. Preparation of super hydrophilic-underwater super oleophobic photoinduced self-cleaning Al2O3@TiO2 ceramic membrane and separation performance of oil-in-water emulsion[J]. Journal of Environmental Chemical Engineering,2023,11(6):111613.
|
| [10] |
FAN Qifeng, LI Zixun, LI Mengzhu,et al. In-situ generation of anti-fouling TPPA/PVDF membranes showing excellent photocatalytic degradation and self-cleaning for dyes in water[J]. Separation and Purification Technology, 2024, 343:127167. doi: 10.1016/j.seppur.2024.127167
|
| [11] |
高正源,白佳龙,孙鹏飞,等. 陶瓷膜在饮用水处理中的应用现状[J]. 材料导报,2024,38(16):56-65.
|
|
GAO Zhengyuan, BAI Jialong, SUN Pengfei,et al. Application status of ceramic membrane in drinking water treatment[J]. Materials Reports,2024,38(16):56-65.
|
| [12] |
MIAO Kai, SONG Yuqi, GUAN Kecheng,et al. Robust hydrophobic ceramic membrane for high-salinity wastewater separation via membrane distillation[J]. Desalination, 2024, 592:118091. doi: 10.1016/j.desal.2024.118091
|
| [13] |
CARMO E S DO, SILVA W L, DOS SANTOS BARBOSA A,et al. Low-cost ceramic membrane production for dye removal[J]. Desalination and Water Treatment, 2024, 320:100726. doi: 10.1016/j.dwt.2024.100726
|
| [14] |
CHEN Ting, FAN Wan, XU Peng,et al. Construction of asymmetric ceramic membranes with identical source interlayer on fly ash support by dip-coating[J]. Journal of the European Ceramic Society, 2024, 44(15):116765. doi: 10.1016/j.jeurceramsoc.2024.116765
|
| [15] |
马娟,程从密,刘琪,等. 低成本多孔非对称陶瓷过滤膜的制备与性能研究进展[J]. 硅酸盐通报,2022,41(10):3634-3646.
|
|
MA Juan, CHENG Congmi, LIU Qi,et al. Research progress on preparation and performance of low cost porous asymmetric ceramic filtration membranes[J]. Bulletin of the Chinese Ceramic Society,2022,41(10):3634-3646.
|
| [16] |
朱烨,朱秀荣,金鑫,等. 改性陶瓷膜催化PMS氧化的二级出水处理特性[J]. 中国环境科学,2023,43(4):1706-1715.
|
|
ZHU Ye, ZHU Xiurong, JIN Xin,et al. PMS oxidation catalyzed by modified ceramic membrane for the treatment of secondary effluent[J]. China Environmental Science,2023,43(4):1706-1715.
|
| [17] |
AUSTRIA H F M, SARDOME R P, SETIAWAN O,et al. Efficient membrane fouling mitigation in self-cleaning piezoelectric PVDF-graphene loose nanofiltration membranes for sustainable textile wastewater treatment[J]. Separation and Purification Technology,2024,346:127317.
|
| [18] |
WANG Ning, LIN Jiayi, LI Yang,et al. One-pot synthesis of high performance CQDs/TiO 2 nanocomposites without carbon source addition[J]. Journal of Water Process Engineering, 2024, 65:105833. doi: 10.1016/j.jwpe.2024.105833
|
| [19] |
CHEN Zhengyang, YU Shui, LIU Jianping,et al. C,F co-doping Ag/TiO2 with visible light photocatalytic performance toward degrading Rhodamine B[J]. Environmental Research,2023,232:116311.
|
| [20] |
ZHANG Xin, XIONG Sirui, SATHIYASEELAN A,et al. Recent advances in photocatalytic nanomaterials for environmental remediation:Strategies,mechanisms,and future directions[J]. Chemosphere,2024,364:143142.
|
| [21] |
CHAKRABORTY A K, GANGULI S, SABUR M A. Nitrogen doped titanium dioxide(N-TiO2):Electronic band structure,visible light harvesting and photocatalytic applications[J]. Journal of Water Process Engineering,2023,55:104183.
|
| [22] |
齐俊红,王黎明,徐丽慧,等. TiO2/石墨烯基复合材料的制备及光催化降解染料研究[J]. 功能材料,2024,55(4):4214-4222.
|
|
QI Junhong, WANG Liming, XU Lihui,et al. Preparation of TiO2/graphene-based composites and photocatalytic degradation of dyes[J]. Journal of Functional Materials,2024,55(4):4214-4222.
|
| [23] |
KANOUN M B, AHMED F, AWADA C,et al. Band gap engineering of Au doping and Au-N codoping into anatase TiO 2 for enhancing the visible light photocatalytic performance[J]. International Journal of Hydrogen Energy, 2024, 51:907-913. doi: 10.1016/j.ijhydene.2023.10.244
|
| [24] |
LU Xinchun, SHEN Liguo, CHEN Cheng,et al. Advance of self-cleaning separation membranes for oil-containing wastewater treatment[J]. Environmental Functional Materials, 2024, 3(1):72-93. doi: 10.1016/j.efmat.2024.06.001
|
| [25] |
PHATTEPUR H, HIREMATH P G. Fabrication of Al2O3 supported TiO2 membranes for photocatalytic applications[J]. Materials Today:Proceedings,2022,65:3694-3699.
|
| [26] |
WANG Dongdong, HUANG Likun, SUN Haiyang,et al. Enhanced photogenic self-cleaning of superhydrophilic Al2O3@GO-TiO2 ceramic membranes for efficient separation of oil-in-water emulsions[J]. Chemical Engineering Journal,2024,486:150211.
|
| [27] |
LI Jing, WANG Ning, ZHUANG Yanhong,et al. Preparation of high permeability γ-Al 2O 3 ultrafiltration membranes from pseudo-boehmite industrial precursor[J]. Ceramics International, 2023, 49(17):28943-28953. doi: 10.1016/j.ceramint.2023.06.163
|
| [28] |
张成,周春勇,何俊,等. 金红石型TiO2的氧化硅膜包覆及其动力学研究[J]. 表面技术,2024,53(8):210-219.
|
|
ZHANG Cheng, ZHOU Chunyong, HE Jun,et al. Coating process and kinetics of rutile TiO2 with silicon oxide film[J]. Surface Technology,2024,53(8):210-219.
|
| [29] |
OSTOVAR S, MOUSSAVI G, MOHAMMADI S,et al. Developing a novel Ti-doped γ-Al 2O 3 xerogel with high photocatalytic chemical and microbial removal performance:Characterization and mechanistic insights[J]. Chemical Engineering Journal, 2023, 464:142545. doi: 10.1016/j.cej.2023.142545
|
| [30] |
FERREIRA V R A, PEREIRA C M, SILVA A F,et al. Ag-doped hollow TiO2 microspheres for the selective photo-degradation of bilirubin[J]. Applied Surface Science,2023,641:158457.
|
| [31] |
张海阳,高柏,樊骅,等. XRD和FTIR对Ce/γ-Al2O3除氟除砷的机理研究[J]. 光谱学与光谱分析,2020,40(9):2869-2874.
|
|
ZHANG Haiyang, GAO Bai, FAN Hua,et al. Mechanism of fluoride and arsenic removal by Ce/γ-Al2O3 based on XRD and FTIR[J]. Spectroscopy and Spectral Analysis,2020,40(9):2869-2874.
|
| [32] |
邓娟,马春辉,许艳红,等. 光驱TiO2/BC复合材料高效去除水中阿莫西林[J]. 环境科学与技术,2024,47(8):53-60.
|
|
DENG Juan, MA Chunhui, XU Yanhong,et al. Photo-driven TiO2/BC composites for efficient removal of amoxicillin in water[J]. Environmental Science & Technology,2024,47(8):53-60.
|
| [33] |
刘梦洁,陈实,周瑜,等. 真空紫外技术在有机污染物降解中的应用[J]. 环境科学与技术,2021,44(7):197-204.
|
|
LIU Mengjie, CHEN Shi, ZHOU Yu,et al. Application of vacuum ultraviolet in the treatment of organic pollutants[J]. Environmental Science & Technology,2021,44(7):197-204.
|