| [1] |
KAMAL I M, ABDELTAWAB N F, RAGAB Y M,et al. Biodegradation,decolorization,and detoxification of di-azo dye direct red 81 by halotolerant,alkali-thermo-tolerant bacterial mixed cultures[J]. Microorganisms, 2022, 10(5):994. doi: 10.3390/microorganisms10050994
|
| [2] |
LIU Zhongmou, ZHANG Pan, ZHAO Xiangyu. Combined treatment process of Fenton-like and peroxymonosulfate catalyzed by Fe(Ⅲ)-reduced graphene oxide for efficient removal of isoprothiolane:Fe(Ⅲ)/Fe(Ⅱ) cycle and mechanism study[J]. Journal of Environmental Chemical Engineering, 2023, 11(5):110656. doi: 10.1016/j.jece.2023.110656
|
| [3] |
ZHANG Hongmin, WANG Xudong, ZHAO Xiaochen,et al. Enhanced degradation of reactive black 5 via persulfate activation by natural bornite:Influencing parameters,mechanism and degradation pathway[J]. Environmental Technology, 2024, 45(20):3961-3973. doi: 10.1080/09593330.2023.2237660
|
| [4] |
CAI Yawen, HU Baowei, WANG Xiangke. Defect engineering on constructing surface active sites in catalysts for environment and energy applications[J]. Frontiers of Chemical Science and Engineering, 2024, 18(7):74. doi: 10.1007/s11705-024-2427-z
|
| [5] |
TAN Zicong, ZHANG Jieru, CHEN Yucheng,et al. Unravelling the role of structural geometry and chemical state of well-defined oxygen vacancies on pristine CeO 2 for H 2O 2 activation[J]. The Journal of Physical Chemistry Letters, 2020, 11(14):5390-5396. doi: 10.1021/acs.jpclett.0c01557
|
| [6] |
WANG Yanyong, QIAO Man, LI Yafei,et al. Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies(Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction[J]. Small, 2018, 14(17):1800136. doi: 10.1002/smll.201800136
|
| [7] |
HE Junyong, YANG Ya, HONG Peidong,et al. Oxygen Vacancies of Mn/CeO x -H induced non-radical activation of peroxymonosulfate through electron mediation for bisphenol A degradation[J]. Journal of Environmental Chemical Engineering, 2023, 11(5):111078. doi: 10.1016/j.jece.2023.111078
|
| [8] |
SHAO Chunfeng, HUA Jiahui, LI Qiang,et al. Near-range modulation of single-atomic Fe sites by simultaneously integrating heteroatom and nanocluster for efficient oxygen reduction[J]. Nano Energy, 2024, 126:109668. doi: 10.1016/j.nanoen.2024.109668
|
| [9] |
陆正义,王永全,蔡蓝燕,等. MOF衍生FeOOH-MnO x 活化PMS降解盐酸四环素[J]. 中国环境科学,2024,44(12):6935-6948.
|
|
LU Zhengyi, WANG Yongquan, CAI Lanyan,et al. MOF-derived FeOOH-MnO x activated permonosulfate to degrade tetracycline hydrochloride[J]. China Environmental Science,2024,44(12):6935-6948.
|
| [10] |
WANG Na, LIU Yonglei, WU Can,et al. SnO 2 shells-induced rich Co 2+ sites and oxygen vacancies in Fe x Co 3- x O 4 nanocubes:Enhanced peroxymonosulfate activation performance for water remediation[J]. Chemical Engineering Journal, 2022, 439:135682. doi: 10.1016/j.cej.2022.135682
|
| [11] |
MA Quanyin, DONG Rui, LIU Heng,et al. Prussian blue analogue-derived Mn-Fe oxide nanocubes with controllable crystal structure and crystallinity as highly efficient OER electrocatalysts[J]. Journal of Alloys and Compounds, 2020, 820:153438. doi: 10.1016/j.jallcom.2019.153438
|
| [12] |
XUE Fei, GUO Xinyang, MIN Boya,et al. Unconventional high-index facet of iridium boosts oxygen evolution reaction:How the facet matters[J]. ACS Catalysis, 2021, 11(13):8239-8246. doi: 10.1021/acscatal.1c01867
|
| [13] |
WU Wenting, HUANG Zhi, LIU Yanying,et al. Boosted peroxymonosulfate activation by bimetallic organometallic frameworks via by-produced and dominated H 2O 2 generation[J]. Chemical Engineering Journal, 2024, 492:152235. doi: 10.1016/j.cej.2024.152235
|
| [14] |
XIE Liangbo, WANG Pengfei, LI Yi,et al. Pauling-type adsorption of O 2 induced electrocatalytic singlet oxygen production on N-CuO for organic pollutants degradation[J]. Nature Communications, 2022, 13(1):5560. doi: 10.1038/s41467-022-33149-4
|
| [15] |
ZHANG Ruikang, NING Fanyu, XU Simin,et al. Oxygen vacancy engineering of WO 3 toward largely enhanced photoelectrochemical water splitting[J]. Electrochimica Acta, 2018, 274:217-223. doi: 10.1016/j.electacta.2018.04.109
|
| [16] |
LI Jun, FANG Jia, GAO Long,et al. Graphitic carbon nitride induced activity enhancement of OMS-2 catalyst for pollutants degradation with peroxymonosulfate[J]. Applied Surface Science, 2017, 402:352-359. doi: 10.1016/j.apsusc.2017.01.129
|
| [17] |
KHAN F, BAEK S H, KIM J H. Influence of oxygen vacancies on surface charge potential and transportation properties of Al-doped ZnO nanostructures produced via atomic layer deposition[J]. Journal of Alloys and Compounds, 2017, 709:819-828. doi: 10.1016/j.jallcom.2017.03.133
|
| [18] |
朱紫琦,李立,徐铭骏,等. 菱形片状铁锰催化剂活化过硫酸盐降解四环素[J]. 中国环境科学,2021,41(11):5142-5152.
|
|
ZHU Ziqi, LI Li, XU Mingjun,et al. Rhombic sheet iron-manganese catalyst-activating peroxymonosulfate for tetracycline degradation[J]. China Environmental Science,2021,41(11):5142-5152.
|
| [19] |
|
|
CHEN Jing, SONG Binghao, ZHU Lei,et al. Efficient degradation of sulfamethoxazole by ascorbic acid modified Mn 3O 4 via peroxymonosulfate activation[J]. China Environmental Science, 2024, 44(1):158-166. doi: 10.1016/j.jece.2022.109230
|
| [20] |
HU Xinyu, WANG Juntao, WANG Jing,et al. β particles induced directional inward migration of oxygen vacancies:Surface oxygen vacancies and interface oxygen vacancies synergistically activate PMS[J]. Applied Catalysis B:Environmental, 2022, 318:121879. doi: 10.1016/j.apcatb.2022.121879
|
| [21] |
HUANG Zihang, LI Hao, LI Wenhan,et al. Electrical and structural dual function of oxygen vacancies for promoting electrochemical capacitance in tungsten oxide[J]. Small, 2020, 16(52):2004709. doi: 10.1002/smll.202004709
|
| [22] |
林双杰,王永全,曾静,等. 非自由基主导的FeMn纳米颗粒活化过一硫酸盐降解有机污染物[J]. 中国环境科学,2024,44(7):3729-3740.
|
|
LIN Shuangjie, WANG Yongquan, ZENG Jing,et al. Nonradical-dominated peroxymonosulfate activation by FeMn nanoparticles for the degradation of organic pollutants[J]. China Environmental Science,2024,44(7):3729-3740.
|
| [23] |
李立,吴丽颖,董正玉,等. 高晶度Mn-Fe LDH催化剂活化过一硫酸盐降解偶氮染料RBK5[J]. 环境科学,2020,41(6):2736-2745.
|
|
LI Li, WU Liying, DONG Zhengyu,et al. Degradation of RBK5 by high crystallinity Mn-Fe LDH catalyst activating peroxymonosulfate[J]. Environmental Science,2020,41(6):2736-2745.
|
| [24] |
TIAN Na, TIAN Xike, NIE Yulun,et al. Biogenic manganese oxide:An efficient peroxymonosulfate activation catalyst for tetracycline and phenol degradation in water[J]. Chemical Engineering Journal, 2018, 352:469-476. doi: 10.1016/j.cej.2018.07.061
|
| [25] |
LI Wei, WANG Zeming, LIAO Huiyun,et al. Enhanced degradation of 2,4,6-trichlorophenol by activated peroxymonosulfate with sulfur doped copper manganese bimetallic oxides[J]. Chemical Engineering Journal, 2021, 417:128121. doi: 10.1016/j.cej.2020.128121
|
| [26] |
卢嘉华,熊重铎,刘青,等. 磁性纳米复合物Fe3 O4@C/MnCo 2O4 活化PMS对 2,4-二氯苯酚的氧化降解[C]//中国化学会第30届学术年会摘要集-第二十六分会:环境化学. 大连,2016:76.
|
| [27] |
SHI Xiuding, HUANG Zhi, XU Jielong,et al. Co and N co-doped carbon nanotubes catalyst for PMS activation:Role of non-radicals[J]. Separation and Purification Technology, 2025, 353:128528. doi: 10.1016/j.seppur.2024.128528
|
| [28] |
HONG Yuxiang, HUANG Zhi, XU Jielong,et al. Surging efficient PMS activation through a COF-MOF dual immobilized catalytic platform:Synergy of enhanced electron transfer and adsorption-PMS activation[J]. Separation and Purification Technology, 2024, 345:127376. doi: 10.1016/j.seppur.2024.127376
|
| [29] |
董正玉,吴丽颖,王霁,等. 新型Fe3O4@α-MnO2活化过一硫酸盐降解水中偶氮染料[J]. 中国环境科学,2018,38(8):3003-3010.
|
|
DONG Zhengyu, WU Liying, WANG Ji,et al. Novel Fe3O4@α-MnO2 activated peroxymonosulfate degradation of azo dyes in aqueous solution[J]. China Environmental Science,2018,38(8):3003-3010.
|
| [30] |
徐铭骏,郭兆春,李立,等. 纳米片状Mn2O3@α-Fe3O4活化过碳酸盐降解偶氮染料[J]. 化工进展,2022,41(2):1043-1053.
|
|
XU Mingjun, GUO Zhaochun, LI Li,et al. Degradation of azo dyes by sodium percarbonate activated with nanosheet Mn2O3@α-Fe3O4 [J]. Chemical Industry and Engineering Progress,2022,41(2):1043-1053.
|
| [31] |
王磊,成先雄,连军锋,等. 尖晶石型c-CuFe2O4催化过硫酸盐降解偶氮染料[J]. 精细化工,2021,38(10):2117-2124.
|
|
WANG Lei, CHENG Xianxiong, LIAN Junfeng,et al. Degradation of azo dye by catalyzed persulfate with spinel c-CuFe2O4 [J]. Fine Chemicals,2021,38(10):2117-2124.
|
| [32] |
|
|
SHE Yuecheng, DONG Zhengyu, WU Liying,et al. Degradation of LAS in wastewater by peroxymonosulfate activated by MnFe 2O 4 [J]. China Environmental Science, 2019, 39(8):3323-3331. doi: 10.3969/j.issn.1000-6923.2019.08.025
|
| [33] |
LIM J S, NAHM H H, CAMPANINI M,et al. Critical ionic transport across an oxygen-vacancy ordering transition[J]. Nature Communications, 2022, 13(1):5130. doi: 10.1038/s41467-022-32826-8
|
| [34] |
杨越,续可,马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展,2023,35(4):543-559.
|
|
YANG Yue, XU Ke, MA Xuelu. Catalytic mechanism of oxygen vacancy defects in metal oxides[J]. Progress in Chemistry,2023,35(4):543-559.
|
| [35] |
薛雨微,叶校圳,曾静,等. 纳米片层铁锰双金属催化剂活化过一硫酸盐预处理烟草糖香料废水[J]. 化工进展,2022,41(10):5661-5668.
|
|
XUE Yuwei, YE Xiaozhen, ZENG Jing,et al. Pretreatment of tobacco sugar flavoring wastewater by nano layered iron-manganese bimetallic catalysts activating peroxymonosulfate[J]. Chemical Industry and Engineering Progress,2022,41(10):5661-5668.
|
| [36] |
钟晴,叶校圳,曾静,等. 八面体FMN-700活化过硫酸盐产生~1O2降解偶氮有机物[J]. 中国环境科学,2023,43(12):6374-6385.
|
|
ZHONG Qing, YE Xiaozhen, ZENG Jing,et al. Efficient decolorization of azo organics by singlet oxygen from activating PMS with octahedral structured FMN-700[J]. China Environmental Science,2023,43(12):6374-6385.
|
| [37] |
LIN Shuangjie, NIU Bo, SHI Xiuding,et al. Non-destructive approach for upcycling the cathode of spent lithium-ion batteries:Combined with the efficient treatment of organic wastewater[J]. Separation and Purification Technology, 2025, 360:130917. doi: 10.1016/j.seppur.2024.130917
|
| [38] |
ZHONG Qing, ZHANG Ting, HUANG Zhi,et al. In-situ immobilization of Fe PBA in the zeolite structure for efficient degradation of benzalkonium chloride:Towards compressed reaction site loss and promoted PMS utilization[J]. Chemical Engineering Journal, 2024, 501:157655. doi: 10.1016/j.cej.2024.157655
|