工业水处理 ›› 2025, Vol. 45 ›› Issue (11): 188-197. doi: 10.19965/j.cnki.iwt.2024-0915

• 试验研究 • 上一篇    

富氧空位铁锰催化剂活化过一硫酸盐降解RBK5的性能与机理

林蓉1(), 田义德2, 洪俊明2   

  1. 1. 福建省厦门环境监测中心站,福建 厦门 361021
    2. 华侨大学化工学院,福建 厦门 361021
  • 收稿日期:2025-03-04 出版日期:2025-11-20 发布日期:2025-11-20
  • 作者简介:

    林蓉(1979— ),本科,高级工程师,E-mail:

Performance and mechanism of an oxygen-vacancy-rich iron-manganese catalyst activating peroxymonosulfate for RBK5 degradation

Rong LIN1(), Yide TIAN2, Junming HONG2   

  1. 1. Fujian Xiamen Environmental Monitoring Center Station, Xiamen 361021, China
    2. College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
  • Received:2025-03-04 Online:2025-11-20 Published:2025-11-20

摘要:

引入氧空位可显著提高催化剂中金属活性位点的电子转移效率,增强催化剂对过一硫酸盐(PMS)的活化能力。笔者通过氢气煅烧法制备富氧空位铁锰催化剂,用于活化PMS降解活性黑5(RBK5)。通过XRD、SEM及XPS等手段表征了催化剂的理化性质,证实了氧空位的成功引入,并揭示了催化剂的晶型结构和表观形貌。性能测试显示,在最佳条件(10 mg/L RBK5,0.2 g/L催化剂,3 mmol/L PMS)下,RBK5降解率可达98%,且催化剂具有优异的循环稳定性和抗干扰能力。机理分析表明,催化剂表面氧空位及Fe与Mn元素构成主要活性位点。催化反应体系中生成了SO4 ·-、·OH、O2 ·-1O2等多种活性物质,其中SO4 ·-和·OH为RBK5降解的主要活性物质。RBK5的降解同时通过自由基途径和表面电子转移途径进行。研究为富氧空位金属催化剂的设计及高效水处理提供了理论依据和实践指导。

关键词: 活性黑5, 过一硫酸盐, 纳米级催化剂, 铁锰双金属

Abstract:

Introducing oxygen vacancies can significantly enhance the electron transfer efficiency of metal active sites and improve the activation of peroxymonosulfate (PMS). In this study, oxygen-vacancy-rich Fe-Mn catalysts were prepared via hydrogen calcination and applied to activate PMS for the degradation of Reactive Black 5 (RBK5). The physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). These analyses confirmed the successful introduction of oxygen vacancies and revealed their crystal structure and morphology of catalysts. Performance tests showed that under optimized conditions (10 mg/L RBK5,0.2 g/L catalyst,3 mmol/L PMS), RBK5 degradation reached 98%, with the catalyst exhibiting excellent re-usability and anti-interference ability. Mechanism analysis revealed that surface oxygen vacancies and Fe and Mn served as the primary active sites. The catalyst surface generated various reactive species, including SO4 ·-, ·OH, O2 ·-, and singlet oxygen (1O2), among which SO4 ·- and ·OH were the dominant contributors to RBK5 degradation. Degradation proceeded via both free-radical pathways and surface electron-transfer pathways. This work provides theoretical guidance and practical reference for the design of oxygen-vacancy-rich metal catalysts for efficient water treatment.

Key words: reactive black 5, peroxymonosulfate, nano-scale catalyst, Fe-Mn bimetal

中图分类号: