1 |
Gao D , Peng Y , Li B , et al. Shortcut nitrification-denitrification by real-time control strategies[J]. Bioresource Technology, 2009, 100 (7): 2298- 2300.
doi: 10.1016/j.biortech.2008.11.017
|
2 |
杨成荫, 陈杨, 欧阳坤, 等. 氨氮废水处理技术的研究现状及展望[J]. 工业水处理, 2018, 38 (3): 1- 5.
URL
|
3 |
彭永臻. SBR法污水生物脱氮除磷及过程控制[M]. 北京: 科学出版社, 2011: 270- 273.
|
4 |
姜超, 隋倩雯, 陈梅雪, 等. 实时控制序批式膜生物反应器处理养猪废水的短程硝化[J]. 环境工程学报, 2017, 11 (11): 5868- 5876.
doi: 10.12030/j.cjee.201604195
|
5 |
隋倩雯.氨吹脱与膜生物反应器组合工艺处理猪场厌氧消化液研究[D].北京:中国农业科学院, 2014.
URL
|
6 |
Sui Q , Liu C , Zhang J , et al. Response of nitrite accumulation and microbial community to free ammonia and dissolved oxygen treatment of high ammonium wastewater[J]. Applied Microbiology and Biotechnology, 2016, 100 (9): 4177- 4187.
doi: 10.1007/s00253-015-7183-z
|
7 |
郑平, 徐向阳, 胡宝兰. 新型生物脱氮理论与技术[M]. 北京: 科学出版社, 2004: 35- 36.
|
8 |
Picioreanu C , van Loosdrecht M C M , Heijnen J J , et al. Modelling of the effect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor[J]. Water Science & Technology, 1997, 36 (1): 147- 156.
URL
|
9 |
Hanaki K , Wantawin C , Ohgaki S . Nitrification at low-level of DO with and without organic loading in a suspended-growth reactor[J]. Water Research, 1990, 24 (3): 297- 302.
doi: 10.1016/0043-1354(90)90004-P
|
10 |
吴雪, 赵鑫, 刘一威, 等. 高氨氮废水短程硝化系统影响因素研究[J]. 环境科学与技术, 2013, (增刊): 5- 9.
URL
|
11 |
于德爽, 彭永臻, 张相忠, 等. 中温短程硝化反硝化的影响因素研究[J]. 中国给水排水, 2003, 19 (1): 40- 42.
doi: 10.3321/j.issn:1000-4602.2003.01.012
|
12 |
Anthonisen A C , Loehr R C , Prakasam T B S . Inhibition of nitrification by ammonia and nitrous acid[J]. Journal Water Pollution Control Federation, 1976, 48 (5): 835- 852.
URL
|
13 |
张宇坤, 王淑莹, 董怡君, 等. 游离氨和游离亚硝酸对亚硝态氮氧化菌活性的影响[J]. 中国环境科学, 2014, 34 (5): 1242- 1247.
URL
|
14 |
郑兴灿, 李亚新. 污水除磷脱氮技术[M]. 北京: 中国建筑工业出版社, 1998: 98- 99.
|
15 |
Tappe W , Laverman A , Bohland M , et al. Maintenance energy demand and starvation recovery dynamics of Nitrosomonas europaea and Nitrobacter winogradskyi cultivated in a retentostat with complete biomass retention[J]. Applied & Environmental Microbiology, 1999, 65 (6): 2471- 2477.
URL
|
16 |
Zanetti L , Frison N , Nota E , et al. Progress in real-time control applied to biological nitrogen removal from wastewater. a short-review[J]. Desalination, 2012, 286:1- 7.
doi: 10.1016/j.desal.2011.11.056
URL
|
17 |
Yang J , Trela J , Plaza E , et al. Oxidation-reduction potential(ORP) as a control parameter in a single-stage partial nitritation/anammox process treating reject water[J]. Journal of Chemical Technology & Biotechnology, 2016, 91 (10): 2582- 2589.
URL
|
18 |
Zhang T , Shao M F , Ye L , et al. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants[J]. Isme Journal, 2012, 6 (6): 1137- 1147.
doi: 10.1038/ismej.2011.188
URL
|
19 |
Mao Y , Yu X , Tong Z , et al. Characterization of Thauera-dominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing[J]. Bioresource Technology, 2013, 128:703- 710.
doi: 10.1016/j.biortech.2012.10.106
URL
|
20 |
Wang B , Peng Y , Guo Y , et al. Illumina MiSeq sequencing reveals the key microorganisms involved in partial nitritation followed by simultaneous sludge fermentation, denitrification and anammox process[J]. Bioresource Technology, 2016, 207:118- 125.
doi: 10.1016/j.biortech.2016.01.072
|
21 |
Larsen P , Nielsen J L , Otzen D , et al. Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge[J]. Applied & Environmental Microbiology, 2008, 74 (5): 1517- 1526.
URL
|
22 |
Hill V R , Kahler A M , Jothikumar N , et al. Multistate evaluation of an ultrafiltration-based procedure for simultaneous recovery of enteric microbes in 100-liter tap water samples[J]. Applied & Environmental Microbiology, 2007, 73 (13): 4218- 4225.
URL
|