[1] Fujishima A,Honda K. Photolysis-decomposition of water at surface of an irradiated semiconductor[J]. Nature,1972,238(1):238-245.
[2] 程萍,顾明元,金燕苹. TiO2光催化剂可见光化研究进展[J]. 化学进展,2005,17(1):8-14.
[3] Wang Xinchen,Maeda K,Chen Xiufang,et al. Polymer semiconductors for artificial photosynthesis:Hydrogen evolution by mesoporous graphitic carbon nitride with visible light[J]. Journal of the American Chemical Society,2009,131(5):1680-1681.
[4] 楚增勇,原博,颜廷楠. g-C3N4光催化性能的研究进展[J]. 无机材料学报,2014,29(8):785-794.
[5] 董海军,陈爱平,何洪波,等. 溶剂热法制备TiO2/g-C3N4及其光催化性能[J]. 华东理工大学学报:自然科学版,2013,39(5):536-541.
[6] 苏海英,王盈霏,王枫亮,等. g-C3N4/TiO2复合材料光催化降解布洛芬的机制[J]. 中国环境科学,2017,37(1):195-202.
[7] 刘文杰,袁华,左士祥,等. 水热法制备TiO2/g-C3N4及其光催化性能[J]. 材料科学与工程学报,2016,34(6):912-917.
[8] 任学昌,念娟妮,王雪姣,等. TiO2/PPY/Fe3O4的水热法制备及其光催化与磁回收性能[J]. 中国环境科学,2012,32(5):863-868.
[9] 刘红艳,傅敏,李红梅,等. g-C3N4的制备及可见光催化性能研究[J]. 功能材料,2015,46(22):22022-22026.
[10] 梁倩倩. 类石墨氮化碳(g-C3N4)及其磁性复合材料的制备与光催化性能的研究[D]. 南京:南京理工大学,2017.
[11] Vijayan P,Mahendiran C,Suresh C,et al. Photocatalytic activity of iron doped nanocrystalline titania for the oxidative degradation of 2,4,6-trichlorophenol[J]. Catalysis Today,2009,141(1/2):220-224.
[12] Yan S C,Li Z S,Zou Z G. Photodegradation performance of g-C3N4 fabricated by directly heating melamine[J]. Langmuir,2009,25(17):10397-10401.
[13] Dong Fan,Wu Liwen,Sun Yanjuan,et al. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalytics[J]. Journal of Materials Chemistry,2011,21(39):15171-15174.
[14] Qiu Yu,Gao Lian. Chemical synthesis of turbostratic carbon nitride, containing C-N crystallites,at atmospheric pressure[J]. Chemical Communications,2003,9(18):2378-2379.
[15] Chen H,Chen J N,Qiu P X,et al. Preparation of Co3O4/mpg-C3N4 catalyst and its visible-light photocatalytic performance[J]. Journal of Functional Materials,2014,45(23):23049-23053.
[16] 傅遍红,郭淑慧,傅敏,等. g-C3N4/TiO2复合纳米材料的制备及其光催化性能分析[J]. 功能材料,2014,45(12):12138-12144. |