1 |
NOVAIS R M, ASCENSÃO G, TOBALDI D M,et al. Biomass fly ash geopolymer monoliths for effective methylene blue removal from wastewaters[J]. Journal of Cleaner Production, 2018, 171:783-794. doi: 10.1016/j.jclepro.2017.10.078
|
2 |
AHMARUZZAMAN M, GUPTA V K. Rice husk and its ash as low-cost adsorbents in water and wastewater treatment[J]. Industrial & Engineering Chemistry Research, 2011, 50(24):13589-13613. doi: 10.1021/ie201477c
|
3 |
FENG Yanfang, DIONYSIOU D D, WU Yonghong,et al. Adsorption of dyestuff from aqueous solutions through oxalic acid-modified Swede rape straw:Adsorption process and disposal methodology of depleted bioadsorbents[J]. Bioresource Technology, 2013, 138:191-197. doi: 10.1016/j.biortech.2013.03.146
|
4 |
KARIMIFARD S, ALAVI MOGHADDAM M R. Application of response surface methodology in physicochemical removal of dyes from wastewater:A critical review[J]. The Science of the Total Environment, 2018, 640/641:772-797. doi: 10.1016/j.scitotenv.2018.05.355
|
5 |
XU Yanchao, WANG Zhenxing, CHENG Xiquan,et al. Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment[J]. Chemical Engineering Journal, 2016, 303:555-564. doi: 10.1016/j.cej.2016.06.024
|
6 |
LAU Y Y, WONG Y S, TENG T T,et al. Degradation of cationic and anionic dyes in coagulation-flocculation process using bi-functionalized silica hybrid with aluminum-ferric as auxiliary agent[J]. RSC Advances, 2015, 5(43):34206-34215. doi: 10.1039/c5ra01346a
|
7 |
TUNÇ S, DUMAN O, GURKAN POLAT T. Monitoring the decolorization of acid orange 8 and acid red 44 from aqueous solution using Fenton’s reagents by online spectrophotometric method:Effect of operation parameters and kinetic study[J]. Industrial & Engineering Chemistry Research, 2013, 52(4):1414-1425. doi: 10.1021/ie302126c
|
8 |
GHAEMI N, SAFARI P. Nano-porous SAPO-34 enhanced thin-film nanocomposite polymeric membrane:Simultaneously high water permeation and complete removal of cationic/anionic dyes from water[J]. Journal of Hazardous Materials, 2018, 358:376-388. doi: 10.1016/j.jhazmat.2018.07.017
|
9 |
LACASA E, CAÑIZARES P, WALSH F,et al. Removal of methylene blue from aqueous solutions using an Fe 2+ catalyst and in situ H 2O 2 generated at gas diffusion cathodes[J]. Electrochimica Acta, 2019, 308:45-53. doi: 10.1016/j.electacta.2019.03.218
|
10 |
HAMA AZIZ K H, MAHYAR A, MIESSNER H,et al. Application of a planar falling film reactor for decomposition and mineralization of methylene blue in the aqueous media via ozonation,Fenton,photocatalysis and non-thermal plasma:A comparative study[J]. Process Safety and Environmental Protection, 2018, 113:319-329. doi: 10.1016/j.psep.2017.11.005
|
11 |
HUANG Daiqin, MA Jianfeng, FAN Changhai,et al. Co-Mn-Fe complex oxide catalysts from layered double hydroxides for decomposition of methylene blue:Role of Mn[J]. Applied Clay Science, 2018, 152:230-238. doi: 10.1016/j.clay.2017.11.018
|
12 |
MAGDY Y H, ALTAHER H. Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust[J]. Journal of Environmental Chemical Engineering, 2018, 6(1):834-841. doi: 10.1016/j.jece.2018.01.009
|
13 |
BHAKTA SHARMA H, PANIGRAHI S, DUBEY B K. Food waste hydrothermal carbonization:Study on the effects of reaction severities,pelletization and framework development using approaches of the circular economy[J]. Bioresource Technology, 2021, 333:125187. doi: 10.1016/j.biortech.2021.125187
|
14 |
XU Congbin, ZHAO Jiwei, YANG Wenjie,et al. Evaluation of biochar pyrolyzed from kitchen waste,corn straw,and peanut hulls on immobilization of Pb and Cd in contaminated soil[J]. Environmental Pollution, 2020, 261:114133. doi: 10.1016/j.envpol.2020.114133
|
15 |
|
|
HU Die, LI Wenqi, ZHANG Liping,et al. Biochar derived from waste newspapers for removing copper ions from aqueous solution[J]. Journal of Zhejiang A & F University, 2020, 37(2):325-334. doi: 10.11833/j.issn.2095-0756.2020.02.018
|
16 |
|
|
HU Erfeng, WU Juan, ZHAO Lixin,et al. Evaluation on pyrolysis characteristics of straw in rotary kiln[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(11):233-238. doi: 10.11975/j.issn.1002-6819.2019.11.027
|
17 |
PENG Peng, LANG Yinhai, WANG Xiaomei. Adsorption behavior and mechanism of pentachlorophenol on reed biochars:pH effect,pyrolysis temperature,hydrochloric acid treatment and isotherms[J]. Ecological Engineering, 2016, 90:225-233. doi: 10.1016/j.ecoleng.2016.01.039
|
18 |
AHMAD M, LEE S S, DOU Xiaomin,et al. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water[J]. Bioresource Technology, 2012, 118:536-544. doi: 10.1016/j.biortech.2012.05.042
|
19 |
HANSEN V, MÜLLER-STÖVER D, MUNKHOLM L J,et al. The effect of straw and wood gasification biochar on carbon sequestration,selected soil fertility indicators and functional groups in soil:An incubation study[J]. Geoderma, 2016, 269:99-107. doi: 10.1016/j.geoderma.2016.01.033
|
20 |
EHGARTNER C R, WERNER V, SELZ S,et al. Carboxylic acid-modified polysilsesquioxane aerogels for the selective and reversible complexation of heavy metals and organic molecules[J]. Microporous and Mesoporous Material, 2021, 312:1-11. doi: 10.1016/j.micromeso.2020.110759
|
21 |
GAO Juan, HEDMAN C, LIU Cun,et al. Transformation of sulfamethazine by manganese oxide in aqueous solution[J]. Environmental Science & Technology, 2012, 46(5):2642-2651. doi: 10.1021/es202492h
|
22 |
ZHANG Baohua, REN Jiawen, GU Xin,et al. A method for the preparation of activated carbon based carbon/carbonaceous composites with controllable surface functionality[J]. Journal of Porous Materials, 2011, 18(6):743-750. doi: 10.1007/s10934-010-9436-7
|
23 |
GASTALDI G, CAPRETTI G, FOCHER B,et al. Characterization and proprieties of cellulose isolated from the Crambe abyssinica hull[J]. Industrial Crops and Products, 1998, 8(3):205-218. doi: 10.1016/s0926-6690(98)00004-1
|
24 |
钱程,桂明生,刘兴勇. 改性小麦秸秆的制备及其对水中亚甲基蓝的吸附性能[J]. 环境工程,2014,32(12):42-46.
|
|
QIAN Cheng, GUI Mingsheng, LIU Xingyong. Synthesis and adsorption properties of methylene blue by modified wheat straw[J]. Environmental Engineering,2014,32(12):42-46.
|
25 |
LUA A C, YANG Ting. Characteristics of activated carbon prepared from pistachio-nut shell by zinc chloride activation under nitrogen and vacuum conditions[J]. Journal of Colloid and Interface Science, 2005, 290(2):505-513. doi: 10.1016/j.jcis.2005.04.063
|
26 |
HSU T C, GUO G L, CHEN Wenhua,et al. Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis[J]. Bioresource Technology, 2010, 101(13):4907-4913. doi: 10.1016/j.biortech.2009.10.009
|
27 |
丁春生,邹邦文,缪佳,等. 高锰酸钾改性活性炭的表征及其吸附Cu2+的性能[J]. 中南大学学报:自然科学版,2012,43(5):2016-2022.
|
|
DING Chunsheng, ZOU Bangwen, MIAO Jia,et al. Characterization and Cu2+ adsorption capability of activated carbon modified by KMnO4 [J]. Journal of Central South University:Science and Technology,2012,43(5):2016-2022.
|
28 |
RASHID J, TEHREEM F, REHMAN A,et al. Synthesis using natural functionalization of activated carbon from pumpkin peels for decolourization of aqueous methylene blue[J]. The Science of the Total Environment, 2019, 671:369-376. doi: 10.1016/j.scitotenv.2019.03.363
|
29 |
|
|
JIANG Jing, HUANG Xiaoyue, BAI Jinlong,et al. Adsorption of clothianidin by potassium permanganate modified biochar in aqueous solution[J]. Chinese Journal of Environmental Engineering, 2022, 16(4):1175-1185. doi: 10.12030/j.cjee202201055
|
30 |
ZHU Xiangdong, LIU Yuchen, ZHOU Chao,et al. A novel porous carbon derived from hydrothermal carbon for efficient adsorption of tetracycline[J]. Carbon, 2014, 77:627-636. doi: 10.1016/j.carbon.2014.05.067
|
31 |
LIU Pei, LIU Wujun, JIANG Hong,et al. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution[J]. Bioresource Technology, 2012, 121:235-240. doi: 10.1016/j.biortech.2012.06.085
|
32 |
SINGH S, KAPOOR D, KHASNABIS S,et al. Mechanism and kinetics of adsorption and removal of heavy metals from wastewater using nanomaterials[J]. Environmental Chemistry Letters, 2021:2351-2381. doi: 10.1007/s10311-021-01196-w
|
33 |
WANG Yan, ZHANG Yong, LI Shiyin,et al. Enhanced methylene blue adsorption onto activated reed-derived biochar by tannic acid[J]. Journal of Molecular Liquids, 2018, 268:658-666. doi: 10.1016/j.molliq.2018.07.085
|
34 |
|
|
ZHANG Yue, LIN Jiayu, LIU Yuan,et al. Adsorption of cadmium ions by chemically modified biochar[J]. Journal of Wuhan University of Science and Technology, 2016, 39(1):48-52. doi: 10.3969/j.issn.1674-3644.2016.01.009
|
35 |
YAGUB M T, SEN T K, AFROZE S,et al. Dye and its removal from aqueous solution by adsorption:A review[J]. Advances in Colloid and Interface Science, 2014, 209:172-184. doi: 10.1016/j.cis.2014.04.002
|
36 |
SONG Xiaoting, NIU Yuzhong, QIU Zhoumin,et al. Adsorption of Hg(Ⅱ) and Ag(Ⅰ) from fuel ethanol by silica gel supported sulfur-containing PAMAM dendrimers:Kinetics,equilibrium and thermodynamics[J]. Fuel, 2017, 206:80-88. doi: 10.1016/j.fuel.2017.05.086
|
37 |
|
|
ZENG Hongjie, YU Jing, WANG Yingying. The performance and mechanism of adsorption azo dye neural red from aqueous solution using magnetic adsorbent MZFS[J]. China Environmental Science, 2019, 39(9):3814-3823. doi: 10.3969/j.issn.1000-6923.2019.09.026
|
38 |
WANG Yingying, ZHU Linli, WANG Xiaohong,et al. Synthesis of aminated calcium lignosulfonate and its adsorption properties for azo dyes[J]. Journal of Industrial and Engineering Chemistry, 2018, 61:321-330. doi: 10.1016/j.jiec.2017.12.030
|
39 |
SUN Lei, CHEN Dongmei, WAN Shungang,et al. Performance,kinetics,and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric,tartaric,and acetic acids[J]. Bioresource Technology, 2015, 198:300-308. doi: 10.1016/j.biortech.2015.09.026
|
40 |
FAN Shisuo, TANG Jie, WANG Yi,et al. Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions:Kinetics,isotherm,thermodynamic and mechanism[J]. Journal of Molecular Liquids, 2016, 220:432-441. doi: 10.1016/j.molliq.2016.04.107
|
41 |
ÇATLıOĞLU F, AKAY S, Ersan TURUNÇ,et al. Preparation and application of Fe-modified banana peel in the adsorption of methylene blue:Process optimization using response surface methodology[J]. Environmental Nanotechnology,Monitoring & Management, 2021, 16:100517. doi: 10.1016/j.enmm.2021.100517
|
42 |
HAKIM H, SUPARTONO W. Equilibrium and kinetic studies of methylene blue biosorption by sugar palm dregs[J]. IOP Conference Series Earth and Environmental Science, 2021, 653(1):012026. doi: 10.1088/1755-1315/653/1/012026
|
43 |
AYALEW A, ARAGAW T A. Utilization of treated coffee husk as low-cost bio-sorbent for adsorption of methylene blue[J]. Adsorption Science and Technology, 2020, 38(5/6):205-222. doi: 10.1177/0263617420920516
|
44 |
|
|
WANG Yanmin, WANG Yali, LIU Hemeng,et al. Adsorption of methylene blue on modified sawdust,peanut husk and rice husk[J]. Science Technology and Engineering, 2018, 18(10):311-315. doi: 10.3969/j.issn.1671-1815.2018.10.054
|
45 |
BATZIAS F A, SIDIRAS D K. Dye adsorption by prehydrolysed beech sawdust in batch and fixed-bed systems[J]. Bioresource Technology, 2007, 98(6):1208-1217. doi: 10.1016/j.biortech.2006.05.020
|
46 |
ERTAŞ M, ACEMIOĞLU B, ALMA M H,et al. Removal of methylene blue from aqueous solution using cotton stalk,cotton waste and cotton dust[J]. Journal of Hazardous Materials, 2010, 183(1/2/3):421-427. doi: 10.1016/j.jhazmat.2010.07.041
|
47 |
BOUYAHIA C, RAHMANI M, MERYEM B,et al. Influence of extraction techniques on the adsorption capacity of methylene blue on sawdust:Optimization by full factorial design[J]. Materials Science for Energy Technologies, 2022, 6(3):114-123. doi: 10.1016/j.mset.2022.12.004
|
48 |
BULUT Y, AYDıN H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells[J]. Desalination, 2006, 194(1/2/3):259-267. doi: 10.1016/j.desal.2005.10.032
|
49 |
YUAN Xun, XING Wei, ZHUO Shuping,et al. Preparation and application of mesoporous Fe/carbon composites as a drug carrier[J]. Microporous and Mesoporous Materials, 2009, 117(3):678-684. doi: 10.1016/j.micromeso.2008.07.039
|
50 |
KUMAR I, PRABHA C J, NATRAYASAMY V. Effect of polyvalent metal ions encrusted biopolymeric hybrid beads on nitrate adsorption[J]. Journal of Environmental Chemical Engineering, 2020, 8(4):103894. doi: 10.1016/j.jece.2020.103894
|
51 |
XIA Caifeng, HUANG Hanhan, LIANG Derui,et al. Adsorption of tetracycline hydrochloride on layered double hydroxide loaded carbon nanotubes and site energy distribution analysis[J]. Chemical Engineering Journal, 2022, 443(8):136398. doi: 10.1016/j.cej.2022.136398
|
52 |
王雪平,陈爱侠,陈贝,等. 基于位点能量分布理论对苯酚和双酚A在沉积物中的竞争吸附研究[J]. 环境科学学报,2019,39(4):1220-1225.
|
|
WANG Xueping, CHEN Aixia, CHEN Bei,et al. Competitive adsorption of phenol and bisphenol A on sediment by site energy distribution theory[J]. Acta Scientiae Circumstantiae,2019,39(4):1220-1225.
|
53 |
SALIMI A, ROOSTA A. Experimental solubility and thermodynamic aspects of methylene blue in different solvents[J]. Thermochimica Acta, 2019, 675:134-139. doi: 10.1016/j.tca.2019.03.024
|
54 |
BELACHEW N, BEKELE G. Synergy of magnetite intercalated bentonite for enhanced adsorption of Congo red dye[J]. Silicon, 2020, 12(3):603-612. doi: 10.1007/s12633-019-00152-2
|