1 |
Sciarria T P , Vacca G , Tambone F , et al. Nutrient recovery and energy production from digestate using microbial electrochemical technologies(METs)[J]. Journal of Cleaner Production, 2019, 208, 1022- 1029.
doi: 10.1016/j.jclepro.2018.10.152
|
2 |
Ramírez-Vargas C , Prado A , Arias C , et al. Microbial electrochemical technologies for wastewater treatment:Principles and evolution from microbial fuel cells to bioelectrochemical-based constructed wetlands[J]. Water, 2018, 10, 1128.
doi: 10.3390/w10091128
|
3 |
Ottoni C A , Simoes M F , Santos J G , et al. Application of microbial fuel cell technology for vinasse treatment and bioelectricity generation[J]. Biotechnology Letters, 2019, 41 (1): 107- 114.
URL
|
4 |
Liu Hong , Logan B E . Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science & Technology, 2004, 38 (14): 4040- 4046.
URL
|
5 |
Qiao Min , Ying Guangguo , Singer A C , et al. Review of antibiotic resistance in China and its environment[J]. Environment International, 2018, 110, 160- 172.
doi: 10.1016/j.envint.2017.10.016
|
6 |
Chang Xiaosong , Meyer M T , Liu Xiaoyun , et al. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China[J]. Environmental Pollution, 2010, 158, 1444- 1450.
doi: 10.1016/j.envpol.2009.12.034
|
7 |
李侃竹, 吴立乐, 黄圣琳, 等. 污水处理厂中红霉素抗药性基因的污染特征及选择性因子[J]. 环境科学, 2014, 35 (12): 4589- 4595.
URL
|
8 |
朱婷婷, 宋战锋, 段标标, 等. 深圳石岩水库抗生素污染特征与健康风险初步评价[J]. 环境与健康杂志, 2013, 30 (11): 1003- 1006.
URL
|
9 |
Yan Weifu , Guo Yunyan , Xiao Yong , et al. The changes of bacterial communities and antibiotic resistance genes in microbial fuel cells during long-term oxytetracycline processing[J]. Water Research, 2018, 142, 105- 114.
doi: 10.1016/j.watres.2018.05.047
|
10 |
Lewis A J , Borole A P . Understanding the impact of flow rate and recycle on the conversion of a complex biorefinery stream using a flow-through microbial electrolysis cell[J]. Biochemical Engineering Journal, 2016, 116, 95- 104.
doi: 10.1016/j.bej.2016.06.008
|
11 |
Zhou Ying , Zhu Nengwu , Guo Wenying , et al. Simultaneous electricity production and antibiotics removal by microbial fuel cells[J]. Journal of Environmental Management, 2018, 217, 565- 572.
URL
|
12 |
Lin A Y , Lin C F , Chiou J M , et al. O3 and O3/H2O2 treatment of sulfonamide and macrolide antibiotics in wastewater[J]. Journal of Hazardous Materials, 2009, 171 (1): 452- 458.
URL
|
13 |
Nguyen T T , Bui X T , Luu V P , et al. Removal of antibiotics in sponge membrane bioreactors treating hospital wastewater:Comparison between hollow fiber and flat sheet membrane systems[J]. Bioresource Technology, 2017, 240, 42- 49.
doi: 10.1016/j.biortech.2017.02.118
|
14 |
Alighardashi A , Pandolfi D , Potier O , et al. Acute sensitivity of activated sludge bacteria to erythromycin[J]. Journal of Hazardous Materials, 2009, 172, 685- 692.
doi: 10.1016/j.jhazmat.2009.07.051
|
15 |
Sun Guotao , Kang Kang , Qiu Ling , et al. Electrochemical performance and microbial community analysis in air cathode microbial fuel cells fuelled with pyroligneous liquor[J]. Bioelectrochemistry, 2019, 126, 12- 19.
doi: 10.1016/j.bioelechem.2018.11.006
|