| 1 | Wang Nannan ,  Zheng Tong ,  Zhang Guangshan , et al.  A review on Fenton-like processes for organic wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2016, 4 (1): 762- 787. doi: 10.1016/j.jece.2015.12.016
 | 
																													
																						| 2 | Klamerth N ,  Malato S ,  Aguera A , et al.  Treatment of municipal wastewater treatment plant effluents with modified photo-Fenton as a tertiary treatment for the degradation of micro pollutants and disinfection[J]. Environmental Science & Technology, 2012, 46 (5): 2885- 2892. URL
 | 
																													
																						| 3 | Wang Zhaohui ,  Bush R T ,  Liu Jianshe .  Arsenic (Ⅲ) and iron(Ⅱ) co-oxidation by oxygen and hydrogen peroxide: Divergent reactions in the presence of organic ligands[J]. Chemosphere, 2013, 93 (9): 1936- 1941. doi: 10.1016/j.chemosphere.2013.06.076    
																																					URL
 | 
																													
																						| 4 | Bokare A D ,  Choi W .  Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes[J]. Journal of Hazardous Materials, 2014, 275, 121- 135. doi: 10.1016/j.jhazmat.2014.04.054    
																																					URL
 | 
																													
																						| 5 | Venny G S ,  Ng H K .  Inorganic chelated modified-Fenton treatment of polycyclic aromatic hydrocarbon(PAH)-contaminated soils[J]. Chemical Engineering Journal, 2012, 180, 1- 8. doi: 10.1016/j.cej.2011.10.082    
																																					URL
 | 
																													
																						| 6 | Lipczynska-Kochany E ,  Kochany J .  Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH[J]. Chemosphere, 2008, 73 (5): 745- 750. doi: 10.1016/j.chemosphere.2008.06.028    
																																					URL
 | 
																													
																						| 7 | Munoz M ,  De Pedro Z M ,  Casas J A , et al.  Preparation of magnetitebased catalysts and their application in heterogeneous Fenton oxidation: A review[J]. Applied Catalysis B: Environmental, 2015, 176/177, 249- 265. doi: 10.1016/j.apcatb.2015.04.003
 | 
																													
																						| 8 | Lin Zhirong ,  Zhao Ling ,  Dong Yuanhua .  Effects of low molecular weight organic acids and fulvic acid on 2, 4, 4'-trichlorobiphenyl degradation and hydroxyl radical formation in a goethite-catalyzed Fentonlike reaction[J]. Chemical Engineering Journal, 2017, 326, 201- 209. doi: 10.1016/j.cej.2017.05.112
 | 
																													
																						| 9 | Zhong Yuanhong ,  Liang Xiaoliang ,  Zhong Yin , et al.  Heterogeneous UV/Fenton degradation of TBBPA catalyzed by titanomagnetite: Catalyst characterization, performance and degradation products[J]. Water Research, 2012, 46 (15): 4633- 4644. doi: 10.1016/j.watres.2012.06.025    
																																					URL
 | 
																													
																						| 10 | Sun Fuwei ,  Liu Haibo ,  Wang Hanlin , et al.  A novel discovery of a heterogeneous Fenton-like system based on natural siderite: A wide range of pH values from 3 to 9[J]. Science of The Total Environment, 2020, 698, 134293. doi: 10.1016/j.scitotenv.2019.134293
 | 
																													
																						| 11 | Zhao Linghui ,  Chen Yufan ,  Liu Yanxia , et al.  Enhanced degradation of chloramphenicol at alkaline conditions by S(-Ⅱ) assisted heterogeneous Fenton-like reactions using pyrite[J]. Chemosphere, 2017, 188, 557- 566. doi: 10.1016/j.chemosphere.2017.09.019
 | 
																													
																						| 12 | Garrido-Ramírez E G ,  Theng B K G ,  Mora M L .  Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions: A review[J]. Applied Clay Science, 2010, 47 (3/4): 182- 192. URL
 | 
																													
																						| 13 | Lin Zhirong ,  Ma Xiaohong ,  Zhao Ling , et al.  Kinetics and products of PCB28 degradation through a goethite-catalyzed Fenton-like reaction[J]. Chemosphere, 2014, 101, 15- 20. doi: 10.1016/j.chemosphere.2013.11.063    
																																					URL
 | 
																													
																						| 14 | De Luca A ,  Dantas R F ,  Esplugas S .  Assessment of iron chelates efficiency for photo-Fenton at neutral pH[J]. Water Research, 2014, 61, 232- 242. doi: 10.1016/j.watres.2014.05.033    
																																					URL
 | 
																													
																						| 15 | Miralles-Cuevas S ,  Oller I ,  Perez J A S , et al.  Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photoFenton using two different iron complexes at neutral pH[J]. Water Research, 2014, 64, 23- 31. doi: 10.1016/j.watres.2014.06.032    
																																					URL
 | 
																													
																						| 16 | Zhang Yongzhi ,  Liu Junjie ,  Pei Jingjing , et al.  Performance evaluation of different air distribution systems in an aircraft cabin mockup[J]. Aerospace Science and Technology, 2017, 70, 359- 366. doi: 10.1016/j.ast.2017.08.009
 | 
																													
																						| 17 | Ruales-Lonfat C ,  Barona J F ,  Sienkiewicz A , et al.  Bacterial inactivation with iron citrate complex: A new source of dissolved iron in solar photo-Fenton process at near-neutral and alkaline pH[J]. Applied Catalysis B: Environmental, 2016, 180, 379- 390. doi: 10.1016/j.apcatb.2015.06.030
 | 
																													
																						| 18 | Villegas-Guzman P ,  Giannakis S ,  Torres-Palma R A , et al.  Remarkable enhancement of bacterial inactivation in wastewater through promotion of solar photo-Fenton at near-neutral pH by natural organic acids[J]. Applied Catalysis B: Environmental, 2017, 205, 219- 227. doi: 10.1016/j.apcatb.2016.12.021
 | 
																													
																						| 19 | Sun Shengpeng ,  Zeng Xia ,  Li Chun , et al.  Enhanced heterogeneous and homogeneous Fenton-like degradation of carbamazepine by nano-Fe3O4/H2O2 with nitrilotriacetic acid[J]. Chemical Engineering Journal, 2014, 244, 44- 49. doi: 10.1016/j.cej.2014.01.039    
																																					URL
 | 
																													
																						| 20 | Sun Hongwei ,  Xie Guihong ,  He Di , et al.  Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling[J]. Applied Catalysis B: Environmental, 2020, 267, 118383. doi: 10.1016/j.apcatb.2019.118383
 | 
																													
																						| 21 | Ortiz De La Plata G B ,  Alfano O M ,  Cassano A E .  Decomposition of 2-chlorophenol employing goethite as Fenton catalyst.Ⅰ. Proposal of a feasible, combined reaction scheme of heterogeneous and homogeneous reactions[J]. Applied Catalysis B: Environmental, 2010, 95 (1/2): 1- 13. URL
 | 
																													
																						| 22 | Clarizia L ,  Russo D ,  Di Somma I , et al.  Homogeneous photo-Fenton processes at near neutral pH: A review[J]. Applied Catalysis B: Environmental, 2017, 209, 358- 371. doi: 10.1016/j.apcatb.2017.03.011
 | 
																													
																						| 23 | Khalid N R ,  Majid A ,  Tahir M B , et al.  Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review[J]. Ceramics International, 2017, 43 (17): 14552- 14571. doi: 10.1016/j.ceramint.2017.08.143
 | 
																													
																						| 24 | Semiāo M A ,  Haminiuk C W I ,  Maciel G M .  Residual diatomaceous earth as a potential and cost effective biosorbent of the azo textile dye Reactive Blue 160[J]. Journal of Environmental Chemical Engineering, 2020, 8 (1): 103617. doi: 10.1016/j.jece.2019.103617
 | 
																													
																						| 25 | Tireli A A ,  Guimaraes I R ,  Terra J C S , et al.  Fenton-like processes and adsorption using iron oxide-pillared clay with magnetic properties for organic compound mitigation[J]. Environ. Sci. Pollut. Res. Int., 2015, 22 (2): 870- 881. doi: 10.1007/s11356-014-2973-x
 | 
																													
																						| 26 | He Yi ,  Jiang Debin ,  Jiang Deyi , et al.  Evaluation of MnO2-templated iron oxide-coated diatomites for their catalytic performance in heterogeneous photo Fenton-like system[J]. J. Hazard. Mater., 2018, 344, 230- 240. doi: 10.1016/j.jhazmat.2017.10.018
 | 
																													
																						| 27 | Guo Ting ,  Wang Kai ,  Zhang Gaoke , et al.  A novel α-Fe2O3@g-C3N4 catalyst: Synthesis derived from Fe-based MOF and its superior photo-Fenton performance[J]. Applied Surface Science, 2019, 469, 331- 339. doi: 10.1016/j.apsusc.2018.10.183
 | 
																													
																						| 28 | Wang Feifei ,  Yu Xiaolin ,  Ge Maofa , et al.  Facile self-assembly synthesis of γ-Fe2O3/graphene oxide for enhanced photo-Fenton reaction[J]. Environmental Pollution, 2019, 248, 229- 237. doi: 10.1016/j.envpol.2019.01.018
 | 
																													
																						| 29 | Boruah P K ,  Sharma B ,  Karbhal I , et al.  Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation[J]. J. Hazard. Mater., 2017, 325, 90- 100. doi: 10.1016/j.jhazmat.2016.11.023
 | 
																													
																						| 30 | Yan Jingchun ,  Yang Lei ,  Qian Linbo , et al.  Nano-magnetite supported by biochar pyrolyzed at different temperatures as hydrogen peroxide activator: Synthesis mechanism and the effects on ethylbenzene removal[J]. Environmental Pollution, 2020, 261, 114020. doi: 10.1016/j.envpol.2020.114020
 | 
																													
																						| 31 | Pirsahe M ,  Moradi S ,  Shahlaei M , et al.  A new composite of nano zero-valent iron encapsulated in carbon dots for oxidative removal of bio-refractory antibiotics from water[J]. Journal of Cleaner Production, 2019, 209, 1523- 1532. doi: 10.1016/j.jclepro.2018.11.175
 | 
																													
																						| 32 | Wu Jinhua ,  Lin Guanghui ,  Li Ping , et al.  Heterogeneous Fenton-like degradation of an azo dye reactive brilliant orange by the combination of activated carbon-FeOOH catalyst and H2O2[J]. Water Sci. Technol., 2013, 67 (3): 572- 578. doi: 10.2166/wst.2012.596
 | 
																													
																						| 33 | Pachamuthu M P ,  Karthikeyan S ,  Maheswari R , et al.  Fenton-like degradation of Bisphenol A catalyzed by mesoporous Cu/TUD-1[J]. Applied Surface Science, 2017, 393, 67- 73. doi: 10.1016/j.apsusc.2016.09.162
 | 
																													
																						| 34 | Zhou Peng ,  Li Wenshu ,  Zhang Jing , et al.  Removal of Rhodamine B during the corrosion of zero valent tungsten via a tungsten speciescatalyzed Fenton-like system[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 100, 202- 209. doi: 10.1016/j.jtice.2019.04.023
 | 
																													
																						| 35 | Zang Chengjie ,  Yu Kaifeng ,  Hu Shiyu , et al.  Adsorption-depended Fenton-like reaction kinetics in CeO2-H2O2 system for salicylic acid degradation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 456- 463. doi: 10.1016/j.colsurfa.2018.05.100
 | 
																													
																						| 36 | Yao Yunjin ,  Chen Hao ,  Lian Chao , et al.  Fe, Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal[J]. Journal of Hazardous Materials, 2016, 314, 129- 139. doi: 10.1016/j.jhazmat.2016.03.089
 | 
																													
																						| 37 | Kim E J ,  Oh D ,  Lee C S , et al.  Manganese oxide nanorods as a robust Fenton-like catalyst at neutral pH: Crystal phase-dependent behavior[J]. Catalysis Today, 2017, 282, 71- 76. doi: 10.1016/j.cattod.2016.03.034
 | 
																													
																						| 38 | Cheng Min ,  Zeng Guangming ,  Huang Danlian , et al.  Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS/H2O2 Fenton-like system[J]. Water Research, 2018, 138, 7- 18. doi: 10.1016/j.watres.2018.03.022
 | 
																													
																						| 39 | Zhang Yuting ,  Liu Cao ,  Xu Bingbing , et al.  Degradation of benzotriazole by a novel Fenton-like reaction with mesoporous Cu/MnO2: Combination of adsorption and catalysis oxidation[J]. Applied Catalysis B: Environmental, 2016, 199, 447- 457. doi: 10.1016/j.apcatb.2016.06.003
 | 
																													
																						| 40 | Gan Guoqiang ,  Liu Juan ,  Zhu Zhixi , et al.  A novel magnetic nanoscaled Fe3O4/CeO2 composite prepared by oxidation-precipitation process and its application for degradation of orange G in aqueous solution as Fenton-like heterogeneous catalyst[J]. Chemosphere, 2017, 168, 254- 263. doi: 10.1016/j.chemosphere.2016.10.064
 | 
																													
																						| 41 | Zheng Chunming ,  Yang Chuanwu ,  Cheng Xiangzhi , et al.  Specifically enhancement of heterogeneous Fenton-like degradation activities for ofloxacin with synergetic effects of bimetallic Fe-Cu on ordered mesoporous silicon[J]. Separation and Purification Technology, 2017, 189, 357- 365. doi: 10.1016/j.seppur.2017.08.015
 | 
																													
																						| 42 | Zhang L ,  Tu J ,  Lyu L , et al.  Enhanced catalytic degradation of ciprofloxacin over Ce-doped OMS-2 microspheres[J]. Applied Catalysis B: Environmental, 2016, 181, 561- 569. doi: 10.1016/j.apcatb.2015.08.029
 | 
																													
																						| 43 | Wang Huihui ,  Zhang Lili ,  Hu Chun , et al.  Enhanced degradation of organic pollutants over Cu-doped LaAlO3 perovskite through heterogeneous Fenton-like reactions[J]. Chemical Engineering Journal, 2018, 332, 572- 581. doi: 10.1016/j.cej.2017.09.058
 | 
																													
																						| 44 | Zhang X ,  Ding Y ,  Tang H , et al.  Degradation of bisphenol A by hydrogen peroxide activated with CuFeO2 microparticles as a heterogeneous Fenton-like catalyst: Efficiency, stability and mechanism[J]. Chemical Engineering Journal, 2014, 236 (1): 251- 262. URL
 | 
																													
																						| 45 | Zhang N ,  Tsang E P ,  Chen J , et al.  Critical role of oxygen vacancies in heterogeneous Fenton oxidation over ceria-based catalysts[J]. J. Colloid Interface. Sci., 2020, 558, 163- 172. doi: 10.1016/j.jcis.2019.09.079
 | 
																													
																						| 46 | Phan T T N ,  Nikoloski A N ,  Bahri P A , et al.  Heterogeneous photo-Fenton degradation of organics using highly efficient Cu-doped LaFeO3 under visible light[J]. Journal of Industrial and Engineering Chemistry, 2018, 61, 53- 64. doi: 10.1016/j.jiec.2017.11.046
 | 
																													
																						| 47 | Zhang Nuanqin ,  Xue Chengjie ,  Wang Kuang , et al.  Efficient oxidative degradation of fluconazole by a heterogeneous Fenton process with Cu-V bimetallic catalysts[J]. Chemical Engineering Journal, 2020, 380 (2): 89- 91. URL
 | 
																													
																						| 48 | Tang Juntao ,  Wang Jianliang .  Iron-copper bimetallic metal-organic frameworks for efficient Fenton-like degradation of sulfamethoxazole under mild conditions[J]. Chemosphere, 2020, 241, 125002. doi: 10.1016/j.chemosphere.2019.125002
 | 
																													
																						| 49 | Wang Z ,  Liu Q ,  Yang F , et al.  Accelerated oxidation of 2, 4, 6-trichlorophenol in Cu(Ⅱ)/H2O2/Cl- system: A unique "halotolerant" Fenton-like process?[J]. Environment International, 2019, 132, 105128. doi: 10.1016/j.envint.2019.105128
 | 
																													
																						| 50 | Lee H ,  Lee H J ,  Sedlak D L , et al.  pH-Dependent reactivity of oxidants formed by iron and copper-catalyzed decomposition of hydrogen peroxide[J]. Chemosphere, 2013, 92 (6): 652- 658. doi: 10.1016/j.chemosphere.2013.01.073    
																																					URL
 | 
																													
																						| 51 | Hammouda S B ,  Zhao F ,  Safaei Z , et al.  Reactivity of novel Ceria-Perovskite composites CeO2-LaMO3(MCu, Fe) in the catalytic wet peroxidative oxidation of the new emergent pollutant 'Bisphenol F': Characterization, kinetic and mechanism studies[J]. Applied Catalysis B: Environmental, 2017, 218, 119- 136. doi: 10.1016/j.apcatb.2017.06.047
 |