工业水处理 ›› 2025, Vol. 45 ›› Issue (12): 65-73. doi: 10.19965/j.cnki.iwt.2025-0499

• 试验研究 • 上一篇    下一篇

机器学习辅助高通量筛选共价有机框架材料吸附铼酸

袁岭1(), 张涵1, 陈晨1,2, 赵昕1,2, 吕路1, 张炜铭1,2()   

  1. 1. 南京大学环境学院,水污染控制与资源绿色循环全国重点实验室,江苏 南京 210023
    2. 生态环境保护有机化工废水处理与资源化工程技术中心,江苏 南京 210046
  • 收稿日期:2025-10-14 出版日期:2025-12-20 发布日期:2026-01-05
  • 通讯作者: 张炜铭
  • 作者简介:

    袁岭(1994— ),博士,E-mail:

  • 基金资助:
    国家自然科学基金项目(U22A20403)

Machine-learning-guided high-throughput screening of covalent organic framework materials for rhenate adsorption

Ling YUAN1(), Han ZHANG1, Chen CHEN1,2, Xin ZHAO1,2, Lu LÜ1, Weiming ZHANG1,2()   

  1. 1. State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing 210023, China
    2. Ecological Environmental Protection Organic Chemical Wastewater Treatment and Resource Utilization Engineering Technology Center, Nanjing 210046, China
  • Received:2025-10-14 Online:2025-12-20 Published:2026-01-05
  • Contact: Weiming ZHANG

摘要:

高效去除核废水中高浓度锝酸盐(99TcO₄⁻)至关重要。现有吸附剂容量低,再生频繁,核素再释放风险高。共价有机框架(COFs)在吸附铼酸(锝酸替代物)方面潜力显著,但传统实验方式筛选高性能吸附剂效率较低。为此,提出基于机器学习的COFs筛选策略。通过收集文献中关于COFs特性和铼酸吸附实验参数的多维数据,构建了一个用于预测铼酸吸附性能的数据集。随机森林算法训练的模型表现最佳,可用来模拟吸附过程并从公开数据库中筛选出高容量吸附剂。关键结构特性分析表明,调控吸附剂孔直径(2~5 nm)和原子加权电负性(0.8~1.0)能显著提升水溶液中铼酸吸附性能。此策略能有效识别高性能水处理吸附剂,加速COFs材料在污染物去除中的应用,为发现优势吸附剂提供了新方法。

关键词: 机器学习, 共价有机框架, 铼酸吸附, 高通量筛选, 模型预测

Abstract:

Efficient removal of high concentrations of pertechnetate (99TcO4⁻) from nuclear wastewater is critical. Current adsorbents have limited capacity and require frequent regeneration, thereby increasing the risk of nuclide re-release. Covalent organic frameworks (COFs) show significant potential for adsorbing rhenate acid (ReO4⁻) (a surrogate for 99TcO4⁻), but traditional experimental screening for effective COFs is inefficient. Consequently, we proposed using machine learning to screen COFs. A comprehensive dataset was created from literature data on COFs properties and ReO4⁻ adsorption parameters. A random forest model, trained on this data, performed well and was used to simulate adsorption and identify high-performance adsorbents from a public database. Key structural characteristics indicated that adjusting the pore limited diameter (2-5 nm) and weighted atomic electronegativity (0.8-1.0) of adsorbents notably improved ReO4⁻ adsorption. This approach efficiently pinpointed top adsorbents, accelerated COFs applications in pollutant removal, and provided a novel method for discovering optimized adsorbents.

Key words: machine learning, covalent organic frameworks, rhenate acid adsorption, high-throughput screening, predictive modeling

中图分类号: