工业水处理 ›› 2025, Vol. 45 ›› Issue (7): 11-18. doi: 10.19965/j.cnki.iwt.2024-0691

• 专论与综述 • 上一篇    下一篇

优化算法在污水处理中的应用进展

刘良才1,2,3(), 毛文煜1,2,3, 郑逸洁4, 戴泽军1,2,3, 胡启星4, 胡智泉4(), 陈鹏1,2,3, 郑军1,2,3, 刘李侃1,2,3   

  1. 1. 湖北中烟工业有限责任公司,湖北 武汉 430040
    2. 湖北新业烟草薄片开发有限公司,湖北 武汉 430100
    3. 重组烟叶应用技术研究湖北省重点实验室,湖北 武汉 430040
    4. 华中科技大学环境科学与工程学院,湖北 武汉 430074
  • 收稿日期:2024-12-26 出版日期:2025-07-20 发布日期:2025-07-22
  • 通讯作者: 胡智泉
  • 作者简介:

    刘良才(1966— ),工程师,E-mail:

Advances in the application of optimization algorithms in wastewater treatment

Liangcai LIU1,2,3(), Wenyu MAO1,2,3, Yijie ZHENG4, Zejun DAI1,2,3, Qixing HU4, Zhiquan HU4(), Peng CHEN1,2,3, Jun ZHENG1,2,3, Likan LIU1,2,3   

  1. 1. China Tobacco Hubei Industrial Co. , Ltd. , Wuhan 430040, China
    2. Hubei Xinye Reconstituted Tobacco Development Co. , Ltd. , Wuhan 430100, China
    3. Hubei Key Laboratory of Application Technology Research of Reconstituted Tobacco, Wuhan 430040, China
    4. School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2024-12-26 Online:2025-07-20 Published:2025-07-22
  • Contact: Zhiquan HU

摘要:

现有的污水处理系统存在自动化水平低、运行成本高和出水不稳定等问题,优化算法的应用可以提高水处理过程的处理效率和自动化控制水平。综述了污水处理系统几种主要的优化算法,包括遗传算法(GA)、粒子群优化算法(PSO)、随机森林(RF)、人工神经网络(ANN)、模糊逻辑控制(FLC)和混合优化算法,并介绍了各类优化算法的优缺点及适用范围,随后讨论了优化算法在水质异常数据监测与补偿、运行参数预测、控制参数优化和多目标优化控制等不同水处理环节中的应用。优化算法的应用提升了污水处理的自动化控制水平、出水质量,降低了运营成本,可有效预测和调节操作参数。最后,探讨了优化算法在实际工程应用中面临的挑战,指出优化算法和系统集成技术仍存在局限,并为优化算法在水处理领域的深入研究与应用指明了发展方向。

关键词: 污水处理, 优化算法, 机器学习, 模型预测, 神经网络

Abstract:

Existing wastewater treatment systems suffer from low automation levels, high operating costs and unstable effluent. The application of optimization algorithms improves the treatment efficiency and automation control level of water treatment process. Several major optimization algorithms for wastewater treatment systems were reviewed, including genetic algorithm (GA), particle swarm optimization algorithm (PSO), random forest (RF), artificial neural network (ANN), fuzzy logic control (FLC), and hybrid optimization algorithms. The advantages and disadvantages of each type of optimization algorithms as well as the scope of their application were introduced, followed by a discussion of the role of optimization algorithms in the monitoring and cleaning of water quality anomalies, operation parameters prediction, control parameters optimization, and multi-objective optimal control, prediction, control parameter optimization and multi-objective optimal control, etc. The application of optimization algorithms enhanced the level of automation and control of wastewater treatment, the quality of effluent, reduces the operating costs, and optimizes the prediction and adjustment of operating parameters. Finally, the challenges of applying optimization algorithms in practical engineering were explored, the limitations in algorithm optimization and system integration technologies were highlighted, and the development direction for optimization algorithms in water treatment was proposed.

Key words: wastewater treatment, optimization algorithm, machine learning, model prediction, neural network

中图分类号: