[1] |
CROLL H C, IKUMA K, ONG S K,et al. Reinforcement learning applied to wastewater treatment process control optimization:Approaches,challenges,and path forward[J]. Critical Reviews in Environmental Science and Technology, 2023, 53(20):1775-1794. doi: 10.1080/10643389.2023.2183699
|
[2] |
WU Jing, LI Zhenbo, ZHU Ling,et al. Optimized BP neural network for dissolved oxygen prediction[J]. IFAC-PapersOnLine, 2018, 51(17):596-601. doi: 10.1016/j.ifacol.2018.08.132
|
[3] |
HAN Honggui, FU Shijia, SUN Haoyuan,et al. Hierarchical nonlinear model predictive control with multi-time-scale for wastewater treatment process[J]. Journal of Process Control, 2021, 108:125-135. doi: 10.1016/j.jprocont.2021.11.002
|
[4] |
BOLICK M M, POST C J, NASER M Z,et al. Comparison of machine learning algorithms to predict dissolved oxygen in an urban stream[J]. Environmental Science and Pollution Research, 2023, 30(32):78075-78096. doi: 10.1007/s11356-023-27481-5
|
[5] |
刘载文,张春芝,王小艺,等. 基于遗传算法的污水处理过程优化控制方法[J]. 计算机与应用化学,2007,24(7):959-962.
|
|
LIU Zaiwen, ZHANG Chunzhi, WANG Xiaoyi,et al. Method of optimal control for wastewater treatment process based on genetic algorithms[J]. Computers and Applied Chemistry,2007,24(7):959-962.
|
[6] |
HOLENDA B, DOMOKOS E,RÉDEY,et al. Aeration optimization of a wastewater treatment plant using genetic algorithm[J]. Optimal Control Applications and Methods, 2007, 28(3):191-208. doi: 10.1002/oca.796
|
[7] |
JAHANDIDEH-TEHRANI M, BOZORG-HADDAD O, LOÁICIGA H A. Application of particle swarm optimization to water management:An introduction and overview[J]. Environmental Monitoring and Assessment, 2020, 192(5):281. doi: 10.1007/s10661-020-8228-z
|
[8] |
李艳,魏飞. 污水好氧处理溶解氧浓度控制策略研究[J]. 伊犁师范学院学报(自然科学版),2019,13(3):44-51.
|
|
LI Yan, WEI Fei. Study on control strategy of dissolved oxygen concentration in wastewater aerobic treatment[J]. Journal of Yili Normal University(Natural Science Edition),2019,13(3):44-51.
|
[9] |
LI Dashe, WANG Xueying, SUN Jiajun,et al. AI-HydSu:An advanced hybrid approach using support vector regression and particle swarm optimization for dissolved oxygen forecasting[J]. Mathematical Biosciences and Engineering, 2021, 18(4):3646-3666. doi: 10.3934/mbe.2021182
|
[10] |
|
[11] |
吕红燕,冯倩. 随机森林算法研究综述[J]. 河北省科学院学报,2019,36(3):37-41.
|
|
Hongyan LÜ, FENG Qian. A review of random forests algorithm[J]. Journal of the Hebei Academy of Sciences,2019,36(3):37-41.
|
[12] |
陈会娟,张丽娜,沈彦. 基于随机森林的污水处理曝气系统研究与应用[J]. 给水排水,2023,59(5):165-169.
|
|
CHEN Huijuan, ZHANG Li’na, SHEN Yan. Research and application of aeration system based on random forest for wastewater treatment[J]. Water & Wastewater Engineering,2023,59(5):165-169.
|
[13] |
董军,胡上序. 混沌神经网络研究进展与展望[J]. 信息与控制,1997,26(5):360-368.
|
|
DONG Jun, HU Shangxu. Research progress and prospect of chaotic neural network[J]. Information and Control,1997,26(5):360-368.
|
[14] |
|
|
LIANG Gaoyun. Research on accurate treatment method of sewage COD based on neural network[D]. Guilin:Guilin University of Electronic Technology, 2023. doi: 10.1109/cei60616.2023.10528097
|
[15] |
MARTÍ P, SHIRI J, DURAN-ROS M,et al. Artificial neural networks vs. gene expression programming for estimating outlet dissolved oxygen in micro-irrigation sand filters fed with effluents[J]. Computers and Electronics in Agriculture, 2013, 99:176-185. doi: 10.1016/j.compag.2013.08.016
|
[16] |
崔玉理. 基于神经网络的污水处理过程建模及仿真的研究[D]. 青岛:山东科技大学,2006.
|
|
CUI Yuli. Research on modeling and simulation of sewage treatment process based on neural network[D]. Qingdao:Shandong University of Science and Technology,2006.
|
[17] |
张浩良,刘聪,洪乾坤,等. MBR中膜污染的人工神经网络预测研究进展[J]. 工业水处理,2022,42(7):15-23.
|
|
ZHANG Haoliang, LIU Cong, HONG Qiankun,et al. Research progress of artificial neural network for membrane fouling prediction in MBR[J]. Industrial Water Treatment,2022,42(7):15-23.
|
[18] |
陈铁军,彭皎龙,杨阳. 改进ACC算法优化的RBF神经网络研究及其应用[J]. 计算机测量与控制,2013,21(5):1323-1326.
|
|
CHEN Tiejun, PENG Jiaolong, YANG Yang. Improved ACC algorithm to optimize RBF neural network and its application[J]. Computer Measurement & Control,2013,21(5):1323-1326.
|
[19] |
HUANG Mingzhi, WAN Jinquan, HU Kang,et al. Enhancing dissolved oxygen control using an on-line hybrid fuzzy-neural soft-sensing model-based control system in an anaerobic/anoxic/oxic process[J]. Journal of Industrial Microbiology & Biotechnology, 2013, 40(12):1393-1401. doi: 10.1007/s10295-013-1334-y
|
[20] |
HAN Honggui, LIU Hongxu, LI Jiaming,et al. Cooperative fuzzy-neural control for wastewater treatment process[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9):5971-5981. doi: 10.1109/tii.2020.3034335
|
[21] |
武情. 我国碳排放权交易价格的影响因素研究:基于GA-PSO-BP神经网络模型[D]. 蚌埠:安徽财经大学,2023.
|
|
WU Qing. Study on the influencing factors of China’s carbon emission trading price:Based on GA-PSO-BP neural network model[D]. Bengbu:Anhui University of Finance & Economics,2023.
|
[22] |
林开春,邵峰晶. 基于随机森林和神经网络的空气质量预测研究[J]. 青岛大学学报(工程技术版),2018,33(2):32-36.
|
|
LIN Kaichun, SHAO Fengjing. Research on air quality prediction based on random forest and neural network[J]. Journal of Qingdao University(Engineering & Technology Edition),2018,33(2):32-36.
|
[23] |
袁沐坤,于广平,刘坚,等. 基于感知-决策-评估的污水处理智能曝气方法[J]. 工业水处理,2022,42(4):65-72.
|
|
YUAN Mukun, YU Guangping, LIU Jian,et al. Intelligent aeration method for wastewater treatment based on perception-decision-evaluation[J]. Industrial Water Treatment,2022,42(4):65-72.
|
[24] |
韩红桂,赵子凡,伍小龙,等. 基于改进随机森林的城市污水处理过程运行数据清洗方法[J]. 北京工业大学学报,2021,47(5):421-430.
|
|
HAN Honggui, ZHAO Zifan, WU Xiaolong,et al. Data cleaning method for municipal wastewater treatment based on improved random forest[J]. Journal of Beijing University of Technology,2021,47(5):421-430.
|
[25] |
刘峻清,陶涛. 一种污水处理RO膜压差异常数据检测和处理方法[J]. 四川环境,2019,38(1):13-17.
|
|
LIU Junqing, TAO Tao. A method for detection and processing abnormal data of RO membrane pressure in waste water treatment[J]. Sichuan Environment,2019,38(1):13-17.
|
[26] |
HARROU F, DAIRI A, SUN Ying,et al. Statistical monitoring of a wastewater treatment plant:A case study[J]. Journal of Environmental Management, 2018, 223:807-814. doi: 10.1016/j.jenvman.2018.06.087
|
[27] |
韩红桂,鲁树武,伍小龙,等. 基于改进型SVM的城市污水处理过程异常数据清洗方法[J]. 北京工业大学学报,2021,47(9):1011-1020.
|
|
HAN Honggui, LU Shuwu, WU Xiaolong,et al. Abnormal data cleaning method for municipal wastewater treatment based on improved support vector machine[J]. Journal of Beijing University of Technology,2021,47(9):1011-1020.
|
[28] |
DU Xianjun, WANG Junlu, JEGATHEESAN V,et al. Dissolved oxygen control in activated sludge process using a neural network-based adaptive PID algorithm[J]. Applied Sciences,2018,8(2):261.
|
[29] |
WANG Dongsheng, CHEN Le, LI Taiyang,et al. Successful prediction for coagulant dosage and effluent turbidity of a coagulation process in a drinking water treatment plant based on the Elman neural network and random forest models[J]. Environmental Science:Water Research & Technology, 2023, 9(9):2263-2274. doi: 10.1039/d3ew00181d
|
[30] |
王军栋,刘思远,齐维贵. 混凝剂投量的RBF网络预测控制系统[J]. 系统仿真学报,2009,21(17):5540-5543.
|
|
WANG Jundong, LIU Siyuan, QI Weigui. RBF network predictive control of coagulant dosage[J]. Journal of System Simulation,2009,21(17):5540-5543.
|
[31] |
李扬. 基于机器学习算法的水煤浆提浓废水絮凝处理加药预测[J]. 智能物联技术,2023,6(6):21-27.
|
|
LI Yang. Prediction of dosing for coal-water slurry concentrated wastewater flocculation treatment based on machine learning algorithms[J]. Technology of IoT & AI,2023,6(6):21-27.
|
[32] |
|
|
|
[33] |
ZHOU Pengxiao, LI Zhong, SNOWLING S,et al. A random forest model for inflow prediction at wastewater treatment plants[J]. Stochastic Environmental Research and Risk Assessment, 2019, 33(10):1781-1792. doi: 10.1007/s00477-019-01732-9
|
[34] |
ZHAO Lin, DAI Tianjiao, QIAO Zhi,et al. Application of artificial intelligence to wastewater treatment:A bibliometric analysis and systematic review of technology,economy,management,and wastewater reuse[J]. Process Safety and Environmental Protection, 2020, 133:169-182. doi: 10.1016/j.psep.2019.11.014
|
[35] |
FERRER J, RODRIGO M A, SECO A,et al. Energy saving in the aeration process by fuzzy logic control[J]. Water Science and Technology, 1998, 38(3):209-217. doi: 10.2166/wst.1998.0210
|
[36] |
ZHU Guibing, PENG Yongzhen, MA Bin,et al. Optimization of anoxic/oxic step feeding activated sludge process with fuzzy control model for improving nitrogen removal[J]. Chemical Engineering Journal, 2009, 151(1/2/3):195-201. doi: 10.1016/j.cej.2009.02.019
|
[37] |
|
|
ZHANG Zhengxian. Design and implementation of water quality online monitoring system based on fuzzy PID control[D]. Hangzhou:Hangzhou Dianzi University, 2024. doi: 10.1109/iccect57938.2023.10141000
|
[38] |
张虹,马振英,房玮. 污水处理自动化控制系统控制策略研究[J]. 仪表技术与传感器,2017,7:54-57.
|
|
ZHANG Hong, MA Zhenying, FANG Wei. Research on control strategy of automatic control system for sewage treatment[J]. Instrument Technique and Sensor,2017,7:54-57.
|
[39] |
CHEN Liping, ZHAO Ruichuan, WU Wenzheng. Based on improved artificial neural network sewage monitoring alarm system method[J]. Scientific Programming, 2022, 2022:6397478. doi: 10.1155/2022/6397478
|
[40] |
SARAVANA KUMAR S, LATHA K. A supervisory fuzzy logic control scheme to improve effluent quality of a wastewater treatment plant[J]. Water Science and Technology, 2021, 84(10/11):3415-3424. doi: 10.2166/wst.2021.225
|
[41] |
陈长琦,朱武,方应翠,等. 超声微电解生物氧化污水处理过程控制系统设计[J]. 合肥工业大学学报(自然科学版),2003,26(6):1188-1191.
|
|
CHEN Changqi, ZHU Wu, FANG Yingcui,et al. Process control system of the wastewater disposal equipment based on ultrasonic micro-electrolysis and biological oxidation[J]. Journal of Hefei University of Technology(Natural Science),2003,26(6):1188-1191.
|
[42] |
RUAN Jujun, ZHANG Chao, LI Ya,et al. Improving the efficiency of dissolved oxygen control using an on-line control system based on a genetic algorithm evolving FWNN software sensor[J]. Journal of Environmental Management, 2017, 187:550-559. doi: 10.1016/j.jenvman.2016.10.056
|
[43] |
曹守启,葛照瑞,张铮. 基于改进粒子群优化算法的溶解氧调控系统设计[J]. 传感器与微系统,2020,39(6):113-115.
|
|
CAO Shouqi, GE Zhaorui, ZHANG Zheng. Design of dissolved oxygen control system based on improved particle swarm optimization algorithm[J]. Transducer and Microsystem Technologies,2020,39(6):113-115.
|
[44] |
杨元君. 基于遗传算法的污水处理控制系统研究[D]. 武汉:武汉工程大学,2016.
|
|
YANG Yuanjun. Research on sewage treatment control system based on genetic algorithm[D]. Wuhan:Wuhan Institute of Technology,2016.
|
[45] |
ZHOU Xinhui, LI Daoliang, ZHANG Lu,et al. Application of an adaptive PID controller enhanced by a differential evolution algorithm for precise control of dissolved oxygen in recirculating aquaculture systems[J]. Biosystems Engineering, 2021, 208:186-198. doi: 10.1016/j.biosystemseng.2021.05.019
|
[46] |
ZHOU Hongbiao, QIAO Junfei. Multiobjective optimal control for wastewater treatment process using adaptive MOEA/D[J]. Applied Intelligence,2019,49(3):1098-1126.
|
[47] |
李博仑. 污水处理关键水质参数预测与优化控制[D]. 天津:天津工业大学,2022.
|
|
LI Bolun. Prediction and optimal control of key water quality parameters in wastewater treatment[D]. Tianjin:Tiangong University,2022.
|
[48] |
王丽萍,任宇,邱启仓,等. 多目标进化算法性能评价指标研究综述[J]. 计算机学报,2021,44(8):1590-1619.
|
|
WANG Liping, REN Yu, QIU Qicang,et al. Survey on performance indicators for multi-objective evolutionary algorithms[J]. Chinese Journal of Computers,2021,44(8):1590-1619.
|
[49] |
花磊. 污水处理过程的鲁棒软测量与多目标优化控制研究[D]. 淮安:淮阴工学院,2023.
|
|
HUA Lei. Research on robust soft sensing and multi-objective optimal control of sewage treatment process[D]. Huai’an:Huaiyin Institute of Technology,2023.
|
[50] |
QIAO Junfei, HOU Ying, ZHANG Lu,et al. Adaptive fuzzy neural network control of wastewater treatment process with multiobjective operation[J]. Neurocomputing, 2018, 275:383-393. doi: 10.1016/j.neucom.2017.08.059
|
[51] |
林梅金. 污水生化处理系统的智能预测及优化控制策略研究[D]. 广州:华南理工大学,2015.
|
|
LIN Meijin. Study on intelligent prediction and optimal control strategy of sewage biochemical treatment system[D]. Guangzhou:South China University of Technology,2015.
|