1 |
Meichtry J M , Brusa M , Mailhot G , et al. Heterogeneous photocatalysis of Cr(Ⅵ) in the presence of citric acid over TiO2 particles:relevance of Cr(Ⅴ)-citrate complexes[J]. Applied Catalysis B Environmental, 2007, 71 (1-2): 101- 107.
doi: 10.1016/j.apcatb.2006.09.002
|
2 |
刘芳. 还原沉淀法对含铬重金属废水的处理研究[J]. 环境污染与防治, 2014, 36 (4): 54- 59.
doi: 10.3969/j.issn.1001-3865.2014.04.011
|
3 |
陈忠林, 李金春子, 沈吉敏, 等. 零价铁对水中六价铬还原性能及沉淀污泥中铬的固定化[J]. 环境工程学报, 2015, 9 (9): 4345- 4352.
URL
|
4 |
刘伟, 杨琦, 李博, 等. 磁性石墨烯吸附水中Cr(Ⅵ)研究[J]. 环境科学, 2015, 36 (2): 537- 544.
URL
|
5 |
Barakat M A , Al-Ansari A M , Kumar R . Synthesis and characterization of Fe-Al binary oxyhydroxides/MWCNTs nanocomposite for the removal of Cr(Ⅵ) from aqueous solution[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 63:303- 311.
doi: 10.1016/j.jtice.2016.03.019
|
6 |
任阳民, 梁宏, 邱阳, 等. 脉冲电解技术处理含铬废水实验研究[J]. 四川理工学院学报:自然科学版, 2017, 30 (3): 1- 5.
URL
|
7 |
Xiao K , Xu F , Jiang L , et al. The oxidative degradation of polystyrene resins on the removal of Cr(Ⅵ) from wastewater by anion exchange[J]. Chemosphere, 2016, 156:326- 333.
doi: 10.1016/j.chemosphere.2016.04.116
|
8 |
肖文丹, 叶雪珠, 孙彩霞, 等. 铬耐性菌对土壤中六价铬的还原作用[J]. 中国环境科学, 2017, 37 (3): 1120- 1129.
URL
|
9 |
Chen D , Ray A K . Removal of toxic metal ions from wastewater by semiconductor photocatalysis[J]. Chemical Engineering Science, 2001, 56 (4): 1561- 1570.
doi: 10.1016/S0009-2509(00)00383-3
|
10 |
Rajeshwar K , Chenthamarakshan C R , Ming Y , et al. Cathodic photoprocesses on titania films and in aqueous suspensions[J]. Journal of Electroanalytical Chemistry, 2002, 538 (2): 173- 182.
URL
|
11 |
陈心满, 徐明芳. UV/TiO2光催化还原Cr(Ⅵ)过程中吸附作用的影响及其消除[J]. 环境科学, 2006, 27 (5): 913- 917.
doi: 10.3321/j.issn:0250-3301.2006.05.017
|
12 |
Zhu L , Ghosh T , Park C Y , et al. Enhanced sonocatalytic degradation of rhodamine B by graphene-TiO2 composites synthesized by an ultrasonic-assisted method[J]. Chinese Journal of Catalysis, 2012, 33 (7/8): 1276- 1283.
URL
|
13 |
敏世雄, 吕功煊. 基于石墨烯光催化剂研究进展[J]. 分析测试技术与仪器, 2014, 20 (4): 215- 229.
URL
|
14 |
Low W , Boonamnuayvitaya V . Enhancing the photocatalytic activity of TiO2 co-doping of graphene-Fe3+ ions for formaldehyde removal[J]. Journal of Environmental Management, 2013, 127:142- 149.
URL
|
15 |
Gao Y Y , Pu X P , Zhang D F , et al. Combustion synthesis of graphene oxide-TiO2 hybrid materials for photodegradation of methyl orange[J]. Carbon, 2012, 50 (11): 4093- 4101.
doi: 10.1016/j.carbon.2012.04.057
URL
|
16 |
Fan W Q , Lai Q H , Zhang Q H , et al. Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution[J]. Journal of Physical Chemistry C, 2011, 115 (21): 10684- 10701.
URL
|
17 |
Szabó T , Tombácz E , Illés E , et al. Enhanced acidity and pH-dependent surface charge characterization of successively oxidized graphite oxides[J]. Carbon, 2006, 44 (3): 537- 545.
doi: 10.1016/j.carbon.2005.08.005
URL
|
18 |
黄桥, 孙红娟, 杨勇辉. 氧化石墨的谱学表征及分析[J]. 无机化学学报, 2011, 27 (9): 1721- 1726.
URL
|
19 |
Zhou K F , Zhu Y H , Yang X L , et al. Preparation of graphene-TiO2 composites with enhanced photocatalytic activity[J]. New Journa of Chemistry, 2011, 35 (2): 353- 359.
doi: 10.1039/C0NJ00623H
|
20 |
Zhang Y B , Tan Y W , Stormer H L , et al. Experimental observation of the quantum Hall effect and Berry'S phase in graphene[J]. Nature, 2005, 438 (7065): 201- 204.
doi: 10.1038/nature04235
|
21 |
Aguado M A , Giménez J , Cervera-March S . Continuous photocatalytic treatment of Cr(Ⅵ) effluents with semiconductor powders[J]. Chemical Engineering Communications, 1991, 104 (1/2/3): 71- 85.
|
22 |
Ku Y , Jung I L . Photocatalytic reduction of Cr(Ⅵ) in aqueous solutions by UV irradiation with the presence of titanium dioxide[J]. Water Research, 2001, 35 (1): 135- 142.
doi: 10.1016/S0043-1354(00)00098-1
|
23 |
张青红, 高濂, 郭景坤. TiO2纳米晶光催化降解铬酸根离子的研究[J]. 高等学校化学学报, 2000, 21 (10): 1547- 1551.
doi: 10.3321/j.issn:0251-0790.2000.10.018
URL
|
24 |
赵慧敏, 苏芳, 范新飞, 等. 石墨烯-二氧化钛复合催化剂对光催化性能的提高[J]. 催化学报, 2012, 33 (5): 777- 782.
URL
|
25 |
Stypula B , Stoch J . The characterization of passive films on chromium electrodes by XPS[J]. Corrosion Science, 1994, 36 (12): 2159- 2167.
doi: 10.1016/0010-938X(94)90014-0
|
26 |
Olsson C O A , Hornstrom S E . An AES and XPS study of the high alloy austenitic stainless steel 254 SMO tested in a ferric chloride solution[J]. Corrosion Science, 1994, 36 (1): 141- 151.
doi: 10.1016/0010-938X(94)90115-5
|
27 |
Lei X F , Xue X X . Effect of the different compound systems on photocatalytic reduction of Cr(Ⅵ) by titanium-bearing blast furnace slag[J]. Acta Chimica Sinica-Chinese Edition-, 2008, 66 (22): 2539- 2546.
|
28 |
Litter M . Heterogeneous photocatalysis Transition metal ions in photocatalytic systems[J]. Applied Catalysis B:Environmental, 1999, 23 (2/3): 89- 114.
URL
|
29 |
Lin W Y . Photocatalytic reduction and immobilization of hexavalent chromium at titanium dioxide in aqueous basic media[J]. Journal of the Electrochemical Society, 1993, 140 (9): 2477.
doi: 10.1149/1.2220847
|
30 |
Linsebigler A L , Lu G , Yates J T . Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chemical Reviews, 1995, 95 (3): 735- 758.
doi: 10.1021/cr00035a013
|
31 |
许宜铭. 环境污染物的光催化降解:活性物种与反应机理[J]. 化学进展, 2009, 21 (2/3): 524- 533.
URL
|
32 |
Ng Y H , Lightcap I V , Goodwin K , et al. To what extent do graphene scaffolds improve the photovoltaic and photocatalytic response of TiO2 nanostructured films?[J]. The Journal of Physical Chemistry Letters, 2010, 1 (15): 2222- 2227.
doi: 10.1021/jz100728z
|
33 |
龙梅, 丛野, 李轩科, 等. 部分还原氧化石墨烯/二氧化钛复合材料的水热合成及其光催化活性[J]. 物理化学学报, 2013, 29 (6): 1344- 1350.
doi: 10.3866/PKU.WHXB201303263
URL
|
34 |
Mills A , Le Hunte S . An overview of semiconductor photocatalysis[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1997, 108 (1): 1- 35.
doi: 10.1016/S1010-6030(97)00118-4
|