1 |
CHU Jianwen, HU Xingyun, KONG Linghao,et al. Dynamic flow and pollution of antimony from polyethylene terephthalate(PET) fibers in China[J]. Science of The Total Environment, 2021, 771:144643. doi: 10.1016/j.scitotenv.2020.144643
|
2 |
ZHANG Yang, DING Chunxia, GONG Daoxin,et al. A review of the environmental chemical behavior,detection and treatment of antimony[J]. Environmental Technology & Innovation, 2021, 24:102026. doi: 10.1016/j.eti.2021.102026
|
3 |
ZHANG Zhiyun, GUO Ying, XIE Nianyi,et al. Ternary NiFeMnO x compounds for adsorption of antimony and subsequent application in energy storage to avoid secondary pollution[J]. Separation and Purification Technology, 2021, 276:119237. doi: 10.1016/j.seppur.2021.119237
|
4 |
NISHAD P A, BHASKAEAPILLAI A. Antimony,a pollutant of emerging concern:A review on industrial sources and remediation technologies[J]. Chemosphere, 2021, 277:130252. doi: 10.1016/j.chemosphere.2021.130252
|
5 |
LONG Xiaojing, WANG Xin, GUO Mengchang,et al. A review of removal technology for antimony in aqueous solution[J]. Journal of Environmental Sciences, 2020, 90:189-204. doi: 10.1016/j.jes.2019.12.008
|
6 |
HAO Chunming, ZHANG Wei, GUI Herong. Hydrogeochemistry characteristic contrasts between low- and high-antimony in shallow drinkable groundwater at the largest antimony mine in hunan province,China[J]. Applied Geochemistry, 2020, 117:104584. doi: 10.1016/j.apgeochem.2020.104584
|
7 |
ZHANG Xhiyun, XIE Nianyi, GUO Ying,et al. Insights into adsorptive removal of antimony contaminants:Functional materials,evaluation and prospective[J]. Journal of Hazardous Materials, 2021, 418:126345. doi: 10.1016/j.jhazmat.2021.126345
|
8 |
ZENG Jianqiang, QI Pengfei, WANG Yan. Electrostatic assembly construction of polysaccharide functionalized hybrid membrane for enhanced antimony removal[J]. Journal of Hazardous Materials, 2021, 410:124633. doi: 10.1016/j.jhazmat.2020.124633
|
9 |
LIU Yuanli, LI Cheng, LOU Chuchen,et al. Antimony removal from textile wastewater by combining PFS & PAC coagulation:Enhanced Sb(Ⅴ) removal with presence of dispersive dye[J]. Separation and Purification Technology, 2021, 275:119037. doi: 10.1016/j.seppur.2021.119037
|
10 |
LI Yongchao, XU Zheng, WU Jixin,et al. Efficiency and mechanisms of antimony removal from wastewater using mixed cultures of iron-oxidizing bacteria and sulfate-reducing bacteria based on scrap iron[J]. Separation and Purification Technology, 2020, 246:116756. doi: 10.1016/j.seppur.2020.116756
|
11 |
MENG Lijun, WU Minjie, CHEN Haisheng,et al. Rejection of antimony in dyeing and printing wastewater by forward osmosis[J]. Science of the Total Environment, 2020, 745:141015. doi: 10.1016/j.scitotenv.2020.141015
|
12 |
CHU Yangyang, ZHANG Xinyu, YU Xuefeng,et al. Antimony removal by a magnetic TiO 2/SiO 2/Fe 3O 4 nanosphere and influence of model dissolved organic matter[J]. Chemical Engineering Journal, 2021, 420:129783. doi: 10.1016/j.cej.2021.129783
|
13 |
高春丽,周涵君,李先振,等. 吸附剂在重金属污染废水修复中的研究进展[J]. 工业水处理,2023,43(9):1-19.
|
|
GAO Chunli ZHOU Hanjun LI Xianzhen,et al. Research progress of adsorbents in the remediation of heavy metal contaminated wastewater[J]. Industrial Water Treatment,2023,43(9):1-19.
|
14 |
QIAO Disi, LI Zehao, DUAN Jinyou,et al. Adsorption and photocatalytic degradation mechanism of magnetic graphene oxide/ZnO nanocomposites for tetracycline contaminants[J]. Chemical Engineering Journal, 2020, 400:125952. doi: 10.1016/j.cej.2020.125952
|
15 |
REYNOSA-MARTINEZ A C, TOVAR G N, GALLEGOS W R,et al. Effect of the degree of oxidation of graphene oxide on As(Ⅲ) adsorption[J]. Journal of Hazardous Materials, 2020, 384:121440. doi: 10.1016/j.jhazmat.2019.121440
|
16 |
ZHU Guocheng, LIN Jialin, YUAN Qian,et al. A biochar supported magnetic metal organic framework for the removal of trivalent antimony[J]. Chemosphere, 2021, 282:131068. doi: 10.1016/j.chemosphere.2021.131068
|
17 |
CHEN Xueqi, LIU Xian, ZHU Lei,et al. One-step fabrication of novel MIL-53(Fe,Al) for synergistic adsorption-photocatalytic degradation of tetracycline[J]. Chemosphere, 2022, 291:133032. doi: 10.1016/j.chemosphere.2021.133032
|
18 |
ZHANG Yan, LI Guo, LU Hong,et al. Synthesis,characterization and photocatalytic properties of MIL-53(Fe)-graphene hybrid materials[J]. RSC advances, 2014, 4(15):7594-7600. doi: 10.1039/c3ra46706f
|
19 |
KE Fei, QIU Lingguang, YUAN Yupeng,et al. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg 2+ from water[J]. Journal of Hazardous Materials, 2011, 196:36-43. doi: 10.1016/j.jhazmat.2011.08.069
|
20 |
YANG Zhiwang, XU Xueqing, LIANG Xixi,et al. MIL-53(Fe)-graphene nanocomposites:Efficient visible-light photocatalysts for the selective oxidation of alcohols[J]. Applied Catalysis B:Environmental, 2016, 198:112-123. doi: 10.1016/j.apcatb.2016.05.041
|
21 |
KÖKÇAM-DEMIR Ü, TANNERT N, BENGSCH M,et al. Improving porosity and water uptake of aluminum metal-organic frameworks(Al-MOFs) as graphite oxide(GO) composites[J]. Microporous and Mesoporous Materials, 2021, 326:111352. doi: 10.1016/j.micromeso.2021.111352
|
22 |
|
|
DU Qingbo, SUN Zongbo, YIN Hui,et al. Preparation and properties of iron oxide mangetic microspheres[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(6):3180-3183. doi: 10.3969/j.issn.1004-8138.2013.06.102
|
23 |
JIAN Meipeng, LIU Bao, ZHANG Gaosheng,et al. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8(ZIF-8) nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 465:67-76. doi: 10.1016/j.colsurfa.2014.10.023
|
24 |
MIAO Shengchao, ZHA Zhenxing, LI Ying,et al. Visible-light-driven MIL-53(Fe)/BiOCl composite assisted by persulfate:Photocatalytic performance and mechanism[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2019, 380:111862. doi: 10.1016/j.jphotochem.2019.111862
|
25 |
|
|
PENG Qintian, TIAN Hailin, GU Yan,et al. Preparation and photocatalytic properties of MIL-53(Fe)/g-C 3N 4 composites[J]. Environmetal Chemistry, 2020, 39(8):2120-2128. doi: 10.7524/j.issn.0254-6108.2019102102
|
26 |
YU Jun, CAO Jiao, YANG Zhaohui,et al. One-step synthesis of Mn-doped MIL-53(Fe) for synergistically enhanced generation of sulfate radicals towards tetracycline degradation[J]. Journal of Colloid and Interface Science, 2020, 580:470-479. doi: 10.1016/j.jcis.2020.07.045
|
27 |
何云鹏. 金属有机骨架复合物的制备及其处理染料废水的研究[D]. 黄石:湖北师范大学,2020.
|
28 |
LIU Chengbao, SHEN Dongchen, TU Zhengkai,et al. Improved room-temperature hydrogen storage performance of lithium-doped MIL-100(Fe)/graphene oxide(GO) composite[J]. International Journal of Hydrogen Energy, 2022, 47(8):5393-5402. doi: 10.1016/j.ijhydene.2021.11.168
|
29 |
BULIN Chaoke, LI Bo, ZHANG Yanghuan,et al. Removal performance and mechanism of nano α-Fe 2O 3/graphene oxide on aqueous Cr(Ⅵ)[J]. Journal of Physics and Chemistry of Solids, 2020, 147:109659. doi: 10.1016/j.jpcs.2020.109659
|
30 |
ZHAO Wenlin, REN Bozhi, HURSTHOUSE A,et al. Facile synthesis of nanosheet-assembled γ-Fe 2O 3 magnetic microspheres and enhanced Sb(Ⅲ) removal[J]. Environmental Science and Pollution Research, 2021, 28(16):19822-19837. doi: 10.1007/s11356-020-11727-7
|
31 |
MEI Weidong, SONG Hui, TIAN Ziyi,et al. Efficient photo-Fenton like activity in modified MIL-53(Fe) for removal of pesticides:Regulation of photogenerated electron migration[J]. Materials Research Bulletin, 2019, 119:110570. doi: 10.1016/j.materresbull.2019.110570
|
32 |
CHEN Haoyun, YUAN Xingzhong, JIANG Longbo,et al. Highly efficient As(Ⅲ) removal through simultaneous oxidation and adsorption by N-CQDs modified MIL-53(Fe)[J]. Separation and Purification Technology, 2022, 286:120409. doi: 10.1016/j.seppur.2021.120409
|
33 |
邹启超,马岩,池殿军,等. 准MIL-53(Fe)光催化剂的合成及其可见光催化降解有机染料性能的提高[J]. 无机化学学报, 2021, 37(12):2289-2297. doi: 10.11862/CJIC.2021.240
|
|
ZOU Qichao, MA Yan, CHI Dianjun,et al. Synthesis of quasi-MIL-53(Fe) photocatalysts for enhanced visible light photocatalytic degradation of organic dyes[J]. Chinese Journal of Inorganic Chemistry, 2021, 37(12):2289-2297. doi: 10.11862/CJIC.2021.240
|
34 |
ZHANG Wei, LI Na, XIAO Ting,et al. Removal of antimonite and antimonate from water using Fe-based metal-organic frameworks:The relationship between framework structure and adsorption perfor-mance[J]. Journal of Environmental Sciences, 2019, 86:213-224. doi: 10.1016/j.jes.2019.06.001
|
35 |
PREKODRAVAC J, VASILJEVIĆ B, MARKOVIĆ Z,et al. Green and facile microwave assisted synthesis of (metal-free) N-doped carbon quantum dots for catalytic applications[J]. Ceramics International, 2019, 45(14):17006-17013. doi: 10.1016/j.ceramint.2019.05.250
|
36 |
唐智娥. 铁改性卡氏变形杆菌吸附剂对水中锑的吸附优化及机理研究[D]. 湘潭:湖南科技大学,2020.
|
37 |
邓仁健,唐智娥,任伯帜,等. 响应曲面法优化Fe(Ⅲ)改性卡氏变形杆菌吸附去除Sb(Ⅴ)及其机理[J]. 环境科学研究,2020,33(12):2888-2897.
|
|
DENG Renjian, TANG Zhie, REN Bozhi,et al. Optimization and mechanism of Sb(Ⅴ) removal from aqueous solution by Fe(Ⅲ) modified proteus cibarius with response surface methodolody[J]. Research of Environmental Sciences,2020,33(12):2888-2897.
|
38 |
张俊. HCO-doped-(Fe3O4) x 复合吸附剂除Sb(Ⅲ)/Sb(Ⅴ)性能研究[D]. 湘潭:湖南科技大学,2020.
|
39 |
ULUSOY H İ, AKÇAY M, ULUSOY S,et al. Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction[J]. Analytica Chimica Acta, 2011, 703(2):137-144. doi: 10.1016/j.aca.2011.07.026
|
40 |
SHAN Chao, MA Zhiyao, TONG Meiping. Efficient removal of trace antimony(Ⅲ) through adsorption by hematite modified magnetic nanoparticles[J]. Journal of Hazardous Materials, 2014, 268:229-236. doi: 10.1016/j.jhazmat.2014.01.020
|
41 |
HASSAN A, SOROURN M, EL-BAZ A,et al. Simple synthesis of bacterial cellulose/magnetite nanoparticles composite for the removal of antimony from aqueous solution[J]. International Journal of Environmental Science and Technology, 2019, 16(3):1433-1448. doi: 10.1007/s13762-018-1737-4
|
42 |
袁乾. 菌菇生物炭负载磁性UiO-66的制备及对Sb(Ⅲ)的吸附研究[D]. 湘潭:湖南科技大学,2020.
|
43 |
|
|
LIAN Xiaoyan, WANG Dongtian, ZHONG Yuet al. Research progress on the treatment of industrial antimony-containing wastewater by coagulation[J]. Industrial Water Treatment,DOI: 10.19965/j.cnki.iwt.2022-0717 .
|
44 |
SIGMUND G, SUN H, HOFMANN T,et al. Predicting the sorption of aromatic acids to noncarbonized and carbonized sorbents[J]. Environmental Science & Technology, 2016, 50(7):3641-3648. doi: 10.1021/acs.est.5b06033
|
45 |
MAO Wei, ZHANG Lixun, ZHANG Ying,et al. Adsorption and photocatalysis removal of arsenite,arsenate,and hexavalent chromium in water by the carbonized composite of manganese-crosslinked sodium alginate[J]. Chemosphere, 2022, 292:133391. doi: 10.1016/j.chemosphere.2021.133391
|