1 |
Wang Jianlong , Wang Shizong . Removal of pharmaceuticals and personal care products(PPCPs) from wastewater: A review[J]. Journal of Environmental Management, 2016, 182, 620- 640.
doi: 10.1016/j.jenvman.2016.07.049
|
2 |
Wang Jianlong , Bai Zhiyong . Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater[J]. Chemical Engineering Journal, 2017, 312, 79- 98.
doi: 10.1016/j.cej.2016.11.118
|
3 |
Li W C . Occurrence, sources, and fate of pharmaceuticals in aquatic environment and soil[J]. Environmental Pollution, 2014, 187, 193- 201.
doi: 10.1016/j.envpol.2014.01.015
|
4 |
Klavarioti M , Mantzavinos D , Kassinos D . Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes[J]. Environment International, 2009, 35 (2): 402- 417.
doi: 10.1016/j.envint.2008.07.009
|
5 |
Wang Jianlong , Chu Libing . Irradiation treatment of pharmaceutical and personal care products (PPCPs) in water and wastewater: An overview[J]. Radiation Physics and Chemistry, 2016, 125, 56- 64.
doi: 10.1016/j.radphyschem.2016.03.012
|
6 |
Lutze H V , Bircher S , Rapp I , et al. Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter[J]. Environmental Science & Technology, 2015, 49 (3): 1673- 1680.
URL
|
7 |
Yang Ying , Guo Hongguang , Zhang Yongli , et al. Degradation of bisphenol a using ozone/persulfate process: Kinetics and mechanism[J]. Water Air and Soil Pollution, 2016, 227 (2): 1- 12.
doi: 10.1007/s11270-016-2746-x
|
8 |
Ghauch A , Tuqan A . Oxidation of bisoprolol in heated persulfate/H2O systems: Kinetics and products[J]. Chemical Engineering Journal, 2012, 183, 162- 171.
doi: 10.1016/j.cej.2011.12.048
|
9 |
Wang Jianlong , Wang Shizong . Activation of persulfate(PS) and peroxymonosulfate(PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334, 1502- 1517.
doi: 10.1016/j.cej.2017.11.059
|
10 |
Li Jun , Ren Yi , Ji Fangzhou , et al. Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe2O4 magnetic nano-particles[J]. Chemical Engineering Journal, 2017, 324, 63- 73.
doi: 10.1016/j.cej.2017.04.104
|
11 |
Maruthamuthu P , Neta P . Reactions of phosphate radicals with organic-compounds[J]. Journal of Physical Chemistry, 1977, 81 (17): 1622- 1625.
doi: 10.1021/j100532a004
|
12 |
Tsitonaki A , Petri B , Crimi M , et al. In situ chemical oxidation of contaminated soil and groundwater using persulfate: A review[J]. Critical Reviews in Environmental Science and Technology, 2010, 40 (1): 55- 91.
doi: 10.1080/10643380802039303
|
13 |
Liang Chenju , Bruell C J , Marley M C , et al. Thermally activated persulfate oxidation of trichloroethylene(TCE) and 1, 1, 1-trichloroethane(TCA) in aqueous systems and soil slurries[J]. Soil & Sediment Contamination, 2003, 12 (2): 207- 228.
URL
|
14 |
Zheng Han , Bao Jianguo , Huang Ying , et al. Efficient degradation of atrazine with porous sulfurized Fe2O3 as catalyst for peroxymonosulfate activation[J]. Applied Catalysis B-Environmental, 2019, 259, 118056.
doi: 10.1016/j.apcatb.2019.118056
|
15 |
Zhou Hongyu , Lai Leiduo , Wan Yanjian , et al. Molybdenum disulfide(MoS2): A versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine[J]. Chemical Engineering Journal, 2020, 384, 123264.
doi: 10.1016/j.cej.2019.123264
|
16 |
He Xuexiang , Mezyk S P , Michael I , et al. Degradation kinetics and mechanism of beta-lactam antibiotics by the activation of H2O2 and Na2S2O8 under UV-254 nm irradiation[J]. Journal of Hazardous Materials, 2014, 279, 375- 383.
doi: 10.1016/j.jhazmat.2014.07.008
|
17 |
Zhao Long , Hou Hong , Fujii A , et al. Degradation of 1, 4-dioxane in water with heat-and Fe2+-activated persulfate oxidation[J]. Environmental Science and Pollution Research, 2014, 21 (12): 7457- 7465.
doi: 10.1007/s11356-014-2668-3
|
18 |
Liang Chenju , Su H W . Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J]. Industrial & Engineering Chemistry Research, 2009, 48 (11): 5558- 5562.
URL
|
19 |
Yang Lie , Xue Jianmin , He Liuyang , et al. Review on ultrasound assisted persulfate degradation of organic contaminants in wastewater: Influences, mechanisms and prospective[J]. Chemical Engineering Journal, 2019, 378, 122146.
doi: 10.1016/j.cej.2019.122146
|
20 |
Matzek L W , Carter K E . Activated persulfate for organic chemical degradation: A review[J]. Chemosphere, 2016, 151, 178- 188.
doi: 10.1016/j.chemosphere.2016.02.055
|
21 |
Huang Kunchang , Zhao Zhiqiang , Hoag G E , et al. Degradation of volatile organic compounds with thermally activated persulfate oxidation[J]. Chemosphere, 2005, 61 (4): 551- 560.
doi: 10.1016/j.chemosphere.2005.02.032
|
22 |
Tan Chaoqun , Gao Naiyun , Deng Yang , et al. Kinetic oxidation of antipyrine in heat-activated persulfate[J]. Desalination and Water Treatment, 2015, 53 (1): 263- 271.
doi: 10.1080/19443994.2013.848414
|
23 |
Qi Chengdu , Liu Xitao , Zhao Wei , et al. Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate[J]. Environmental Science and Pollution Research, 2015, 22 (6): 4670- 4679.
doi: 10.1007/s11356-014-3718-6
|
24 |
Yang Shiying , Wang Ping , Yang Xin , et al. Degradation efficiencies of azo dye acid orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide[J]. Journal of Hazardous Materials, 2010, 179 (1/2/3): 552- 558.
URL
|
25 |
Ferreira L C , Castro-Alferez M , Nahim-Granados S , et al. Inactivation of water pathogens with solar photo-activated persulfate oxidation[J]. Chemical Engineering Journal, 2020, 381, 122275.
doi: 10.1016/j.cej.2019.122275
|
26 |
Monteagudo J M , El-Taliawy H , Duran A , et al. Sono-activated persulfate oxidation of diclofenac: Degradation, kinetics, pathway and contribution of the different radicals involved[J]. Journal of Hazardous Materials, 2018, 357, 457- 465.
doi: 10.1016/j.jhazmat.2018.06.031
|
27 |
Drzewicz P , Perez-Estrada L , Alpatova A , et al. Impact of peroxydisulfate in the presence of zero valent iron on the oxidation of cyclohexanoic acid and naphthenic acids from oil sands process-affected water[J]. Environmental Science & Technology, 2012, 46 (16): 8984- 8991.
URL
|
28 |
Duan Xiaoguang , Sun Hongqi , Kang Jian , et al. Insights into heterogeneous catalysis of persulfate activation on dimensional-structured nanocarbons[J]. Acs Catalysis, 2015, 5 (8): 4629- 4636.
doi: 10.1021/acscatal.5b00774
|
29 |
Jans U , Hoigné J . Activated carbon and carbon black catalyzed transformation of aqueous ozone into OH-radicals[J]. Ozone: Science & Engineering, 1998, 20 (1): 67- 90.
URL
|
30 |
Yun E T , Yoo H Y , Bae H , et al. Exploring the role of persulfate in the activation process: Radical precursor versus electron acceptor[J]. Environmental Science & Technology, 2017, 51 (17): 10090- 10099.
URL
|
31 |
Luo Haoyu , Lin Qintie , Zhang Xiaofeng , et al. Determining the key factors of nonradical pathway in activation of persulfate by metalbiochar nanocomposites for bisphenol a degradation[J]. Chemical Engineering Journal, 2020, 391, 123555.
doi: 10.1016/j.cej.2019.123555
|
32 |
Anipsitakis G P , Dionysiou D D . Radical generation by the interaction of transition metals with common oxidants[J]. Environmental Science & Technology, 2004, 38 (13): 3705- 3712.
URL
|
33 |
Hu Peidong , Long Mingce . Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications[J]. Applied Catalysis B-Environmental, 2016, 181, 103- 117.
doi: 10.1016/j.apcatb.2015.07.024
|
34 |
Rastogi A , Ai-Abed S R , Dionysiou D D . Sulfate radical-based ferrous-peroxymonosulfate oxidative system for pcbs degradation in aqueous and sediment systems[J]. Applied Catalysis B-Environmental, 2009, 85 (3/4): 171- 179.
URL
|
35 |
Lebik-Elhadi H , Frontistis Z , Ait-Amar H , et al. Degradation of pesticide thiamethoxam by heat-activated and ultrasound-activated persulfate: Effect of key operating parameters and the water matrix[J]. Process Safety and Environmental Protection, 2020, 134, 197- 207.
doi: 10.1016/j.psep.2019.11.041
|
36 |
Huang Zhihui , Ji Zhiyong , Zhao Yingying , et al. Treatment of wastewater containing 2-methoxyphenol by persulfate with thermal and alkali synergistic activation: Kinetics and mechanism[J]. Chemical Engineering Journal, 2020, 380, 122411.
doi: 10.1016/j.cej.2019.122411
|
37 |
Pan Yuwei , Zhang Ying , Zhou Minghua , et al. Enhanced removal of emerging contaminants using persulfate activated by UV and premagnetized Fe0[J]. Chemical Engineering Journal, 2019, 361, 908- 918.
doi: 10.1016/j.cej.2018.12.135
|
38 |
Kemmou L , Frontistis Z , Vakros J , et al. Degradation of antibiotic sulfamethoxazole by biochar-activated persulfate: Factors affecting the activation and degradation processes[J]. Catalysis Today, 2018, 313, 128- 133.
doi: 10.1016/j.cattod.2017.12.028
|
39 |
Ouyang Mengyun , Li Xiaoming , Xu Qiuxiang , et al. Heterogeneous activation of persulfate by ag doped BiFeO3 composites for tetracycline degradation[J]. Journal of Colloid and Interface Science, 2020, 566, 33- 45.
doi: 10.1016/j.jcis.2020.01.012
|
40 |
Samarghandi M R , Tari K , Shabanloo A , et al. Synergistic degradation of acid blue 113 dye in a thermally activated persulfate(TAP)/ZnO-GAC oxidation system: Degradation pathway and application for real textile wastewater[J]. Separation and Purification Technology, 2020, 247, 116931.
doi: 10.1016/j.seppur.2020.116931
|
41 |
Song Yali , Huang Long , Zhang Xiaojing , et al. Synergistic effect of persulfate and g-C3N4 under simulated solar light irradiation: Implication for the degradation of sulfamethoxazole[J]. Journal of Hazardous Materials, 2020, 393, 122379.
doi: 10.1016/j.jhazmat.2020.122379
|
42 |
Sajjadi S , Khataee A , Bagheri N , et al. Degradation of diazinon pesticide using catalyzed persulfate with Fe3O4@MOF-2 nanocomposite under ultrasound irradiation[J]. Journal of Industrial and Engineering Chemistry, 2019, 77, 280- 290.
doi: 10.1016/j.jiec.2019.04.049
|
43 |
Kim C , Ahn J Y , Kim T Y , et al. Mechanisms of electro-assisted persulfate/nano-Fe0 oxidation process: Roles of redox mediation by dissolved Fe[J]. Journal of Hazardous Materials, 2020, 388, 121739.
doi: 10.1016/j.jhazmat.2019.121739
|
44 |
Xu Yanyan , Wang Yan , Wan Jinquan , et al. Reduced graphene oxide-supported metal organic framework as a synergistic catalyst for enhanced performance on persulfate induced degradation of trichlorophenol[J]. Chemosphere, 2020, 240, 124849.
doi: 10.1016/j.chemosphere.2019.124849
|
45 |
Zhou Xinquan , Luo Chunguang , Luo Mengyi , et al. Understanding the synergetic effect from foreign metals in bimetallic oxides for pms activation: A common strategy to increase the stoichiometric efficiency of oxidants[J]. Chemical Engineering Journal, 2020, 381, 122587.
doi: 10.1016/j.cej.2019.122587
|
46 |
Takdastan A , Kakavandi B , Azizi M , et al. Efficient activation of peroxymonosulfate by using ferroferric oxide supported on carbon/UV/ US system: A new approach into catalytic degradation of bisphenol A[J]. Chemical Engineering Journal, 2018, 331, 729- 743.
doi: 10.1016/j.cej.2017.09.021
|
47 |
Fu Yingying , Li Shengnan , Shi Yufei , et al. Removal of artificial sweeteners using UV/persulfate: Radical-based degradation kinetic model in wastewater, pathways and toxicity[J]. Water Research, 2019, 167, 115102.
doi: 10.1016/j.watres.2019.115102
|
48 |
Marjanovic M , Giannakis S , Grandjean D , et al. Effect of um Fe addition, mild heat and solar UV on sulfate radical-mediated inactivation of bacteria, viruses, and micropollutant degradation in water[J]. Water Research, 2018, 140, 220- 231.
doi: 10.1016/j.watres.2018.04.054
|
49 |
Lei Yongjia , Tian Yu , Sobhani Z , et al. Synergistic degradation of pfas in water and soil by dual-frequency ultrasonic activated persulfate[J]. Chemical Engineering Journal, 2020, 388, 124215.
doi: 10.1016/j.cej.2020.124215
|
50 |
Castilla-Acevedo S F , Betancourt-Buitrago L A , Dionysiou D D , et al. Ultraviolet light-mediated activation of persulfate for the degradation of cobalt cyanocomplexes[J]. Journal of Hazardous Materials, 2020, 392, 122389.
doi: 10.1016/j.jhazmat.2020.122389
|
51 |
Niu Lijun , Xian Guang , Long Zeqing , et al. MnCeOx with high efficiency and stability for activating persulfate to degrade AO7 and ofloxacin[J]. Ecotoxicology and Environmental Safety, 2020, 191, 110228.
doi: 10.1016/j.ecoenv.2020.110228
|
52 |
Lei Yang , Chen C S , Tu Y J , et al. Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: Mechanism, stability, and effects of pH and bicarbonate ions[J]. Environmental Science & Technology, 2015, 49 (11): 6838- 6845.
URL
|
53 |
Zhang Yunfei , Niu Junfeng , Xu Jianhui . Fe(Ⅱ)-promoted activation of peroxymonosulfate by molybdenum disulfide for effective degradation of Acetaminophen[J]. Chemical Engineering Journal, 2020, 381, 122718.
doi: 10.1016/j.cej.2019.122718
|
54 |
He Dongqin , Cheng Ying , Zeng Yifeng , et al. Synergistic activation of peroxymonosulfate and persulfate by ferrous ion and molybdenum disulfide for pollutant degradation: Theoretical and experimental studies[J]. Chemosphere, 2020, 240, 124979.
doi: 10.1016/j.chemosphere.2019.124979
|
55 |
Dong Zhengyu , Zhang Qian , Chen B-Y , et al. Oxidation of bisphenol a by persulfate via Fe3O4-alpha-MnO2 nanoflower-like catalyst: Mechanism and efficiency[J]. Chemical Engineering Journal, 2019, 357, 337- 347.
doi: 10.1016/j.cej.2018.09.179
|
56 |
Chen Meiqing , Wu Pingxiao , Zhu Nengwu , et al. Re-utilization of spent Cu2+-immobilized MgMn-layered double hydroxide for efficient sulfamethoxazole degradation: Performance and metals synergy[J]. Chemical Engineering Journal, 2020, 392, 123709.
doi: 10.1016/j.cej.2019.123709
|
57 |
Wang Minghua , Yang Longyu , Guo Chuanpan , et al. Bimetallic Fe/ Ti-based metal-organic framework for persulfate-assisted visible light photocatalytic degradation of orange Ⅱ[J]. Chemistryselect, 2018, 3 (13): 3664- 3674.
doi: 10.1002/slct.201703134
|
58 |
Xian Guang , Niu Lijun , Zhang Guangming , et al. An efficient Cuogamma Fe2O3 composite activates persulfate for organic pollutants removal: Performance, advantages and mechanism[J]. Chemosphere, 2020, 242, 125191.
doi: 10.1016/j.chemosphere.2019.125191
|
59 |
Chen Cheng , Liu Li , Guo Jing , et al. Sulfur-doped copper-cobalt bimetallic oxides with abundant Cu(Ⅰ): A novel peroxymonosulfate activator for chloramphenicol degradation[J]. Chemical Engineering Journal, 2019, 361, 1304- 1316.
doi: 10.1016/j.cej.2018.12.156
|
60 |
Gao Yuqiong , Gao Naiyun , Wang Wei , et al. Ultrasound-assisted heterogeneous activation of persulfate by nano zero-valent iron(nZVI) for the propranolol degradation in water[J]. Ultrasonics Sonochemistry, 2018, 49, 33- 40.
doi: 10.1016/j.ultsonch.2018.07.001
|
61 |
Zhang Tingting , Yang Yanling , Li Xing , et al. Degradation of sulfamethazine by persulfate activated with nanosized zero-valent copper in combination with ultrasonic irradiation[J]. Separation and Purification Technology, 2020, 239, 116537.
doi: 10.1016/j.seppur.2020.116537
|
62 |
Xiao Sa , Cheng Min , Zhong Hua , et al. Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways: A review[J]. Chemical Engineering Journal, 2020, 384, 123625.
URL
|
63 |
Pang Yixiong , Ruan Yang , Feng Yong , et al. Ultrasound assisted zero valent iron corrosion for peroxymonosulfate activation for Rhodamine-B degradation[J]. Chemosphere, 2019, 228, 412- 417.
doi: 10.1016/j.chemosphere.2019.04.164
|
64 |
Khandarkhaeva M , Batoeva A , Sizykh M , et al. Photo-fenton-like degradation of bisphenol A by persulfate and solar irradiation[J]. Journal of Environmental Management, 2019, 249, 109348.
doi: 10.1016/j.jenvman.2019.109348
|
65 |
Asgari G , Shabanloo A , Salari M , et al. Sonophotocatalytic treatment of AB113 dye and real textile wastewater using ZnO/persulfate: Modeling by response surface methodology and artificial neural network[J]. Environmental Research, 2020, 184, 109367.
doi: 10.1016/j.envres.2020.109367
|
66 |
Badmus K O , Tijani J , Massima E , et al. Treatment of persistent organic pollutants in wastewater using hydrodynamic cavitation in synergy with advanced oxidation process[J]. Environmental Science and Pollution Research, 2018, 25 (8): 7299- 7314.
doi: 10.1007/s11356-017-1171-z
|
67 |
Anipsitakis G P , Dionysiou D D . Transition metal/UV-based advanced oxidation technologies for water decontamination[J]. Applied Catalysis B-Environmental, 2004, 54 (3): 155- 163.
doi: 10.1016/j.apcatb.2004.05.025
|
68 |
Alexopoulou C , Petala A , Frontistis Z , et al. Copper phosphide and persulfate salt: A novel catalytic system for the degradation of aqueous phase micro-contaminants[J]. Applied Catalysis B-Environmental, 2019, 244, 178- 187.
doi: 10.1016/j.apcatb.2018.11.058
|
69 |
Liu Yangxian , Liu Ziyang , Wang Yan , et al. Simultaneous absorption of SO2 and NO from flue gas using ultrasound/Fe2+/heat coactivated persulfate system[J]. Journal of Hazardous Materials, 2018, 342, 326- 334.
doi: 10.1016/j.jhazmat.2017.08.042
|
70 |
Aher A , Papp J , Colburn A , et al. Naphthenic acids removal from high tds produced water by persulfate mediated iron oxide functionalized catalytic membrane, and by nanofiltration[J]. Chemical Engineering Journal, 2017, 327, 573- 583.
doi: 10.1016/j.cej.2017.06.128
|
71 |
Ma Zhifei , Yang Yu , Jiang Yonghai , et al. Enhanced degradation of 2, 4-dinitrotoluene in groundwater by persulfate activated using iron-carbon micro-electrolysis[J]. Chemical Engineering Journal, 2017, 311, 183- 190.
doi: 10.1016/j.cej.2016.11.083
|
72 |
Jiang Zhi , Zhao Jie , Li Chaofang , et al. Strong synergistic effect of Co3O4 encapsulated in nitrogen-doped carbon nanotubes on the nonradical-dominated persulfate activation[J]. Carbon, 2020, 158, 172- 183.
doi: 10.1016/j.carbon.2019.11.066
|
73 |
Sharfalddin A , Alzahrani E , Alamoudi M . Investigation of the synergism of hybrid advanced oxidation processes with an oxidation agent to degrade three dyes[J]. Research on Chemical Intermediates, 2017, 43 (4): 2587- 2601.
doi: 10.1007/s11164-016-2781-7
|
74 |
Grcic I , Papic S , Koprivanac N , et al. Kinetic modeling and synergy quantification in sono and photooxidative treatment of simulated dyehouse effluent[J]. Water Research, 2012, 46 (17): 5683- 5695.
doi: 10.1016/j.watres.2012.07.058
|
75 |
Chakma S , Praneeth S , Moholkar V S . Mechanistic investigations in sono-hybrid (ultrasound/Fe2+/UVC) techniques of persulfate activation for degradation of azorubine[J]. Ultrasonics Sonochemistry, 2017, 38, 652- 663.
doi: 10.1016/j.ultsonch.2016.08.015
|
76 |
Duan Xiaoguang , Indrawirawan S , Kang Jian , et al. Synergy of carbocatalytic and heat activation of persulfate for evolution of reactive radicals toward metal-free oxidation[J]. Catalysis Today, 2019, 355, 319- 324.
URL
|
77 |
Madhavan J , Panneerselvam S , Anandan S , et al. Ultrasound assisted photocatalytic degradation of diclofenac in an aqueous environment[J]. Chemosphere, 2010, 80 (7): 747- 752.
doi: 10.1016/j.chemosphere.2010.05.018
|
78 |
Zeng Libin , Li Shiyu , Li Xinyong , et al. Visible-light-driven sonophotocatalysis and peroxymonosulfate activation over 3D urchinlike MoS2/C nanoparticles for accelerating levofloxacin elimination: Optimization and kinetic study[J]. Chemical Engineering Journal, 2019, 378, 122039.
doi: 10.1016/j.cej.2019.122039
|
79 |
Bahrami H , Eslami A , Nabizadeh R , et al. Degradation of trichloroethylene by sonophotolytic-activated persulfate processes: Optimization using response surface methodology[J]. Journal of Cleaner Production, 2018, 198, 1210- 1218.
doi: 10.1016/j.jclepro.2018.07.100
|
80 |
Monteagudo J M , Duran A , Gonzalez R , et al. In situ chemical oxidation of carbamazepine solutions using persulfate simultaneously activated by heat energy, UV light, Fe2+ ions, and H2O2[J]. Applied Catalysis B-Environmental, 2015, 176, 120- 129.
URL
|
81 |
Frontistis Z . Sonoelectrochemical degradation of propyl paraben: An examination of the synergy in different water matrices[J]. International Journal of Environmental Research and Public Health, 2020, 17 (8): 2621.
doi: 10.3390/ijerph17082621
|
82 |
Hao Pulin , Hu Mingzhu , Xing Rong , et al. Synergistic degradation of methylparaben on CuFe2O4-rGO composite by persulfate activation[J]. Journal of Alloys and Compounds, 2020, 823, 153757.
doi: 10.1016/j.jallcom.2020.153757
|
83 |
Hu Limin , Wang Peng , Zhang Guangshan , et al. Enhanced persulfate oxidation of organic pollutants and removal of total organic carbons using natural magnetite and microwave irradiation[J]. Chemical Engineering Journal, 2020, 383, 123140.
doi: 10.1016/j.cej.2019.123140
|
84 |
Kang Jian , Zhang Huayang , Duan Xiaoguang , et al. Magnetic Ni-Co alloy encapsulated N-doped carbon nanotubes for catalytic membrane degradation of emerging contaminants[J]. Chemical Engineering Journal, 2019, 362, 251- 261.
doi: 10.1016/j.cej.2019.01.035
|
85 |
Ding Han , Hu Jiangyong . Degradation of ibuprofen by UVA-led/TiO2/persulfate process: Kinetics, mechanism, water matrix effects, intermediates and energy consumption[J]. Chemical Engineering Journal, 2020, 397, 125462.
doi: 10.1016/j.cej.2020.125462
|
86 |
Zhang Tingting , Yang Yanling , Gao Jingfeng , et al. Synergistic degradation of chloramphenicol by ultrasound-enhanced nanoscale zero-valent iron/persulfate treatment[J]. Separation and Purification Technology, 2020, 240, 116575.
doi: 10.1016/j.seppur.2020.116575
|
87 |
Dong Lulu , Xu Tiefeng , Chen Wenxing , et al. Synergistic multiple active species for the photocatalytic degradation of contaminants by imidazole-modified g-C3N4 coordination with iron phthalocyanine in the presence of peroxymonosulfate[J]. Chemical Engineering Journal, 2019, 357, 198- 208.
doi: 10.1016/j.cej.2018.09.094
|
88 |
Liu Zhen , Zhao Chun , Wang Pu , et al. Removal of carbamazepine in water by electro-activated carbon fiber-peroxydisulfate: Comparison, optimization, recycle, and mechanism study[J]. Chemical Engineering Journal, 2018, 343, 28- 36.
doi: 10.1016/j.cej.2018.02.114
|
89 |
Xu Lu , Fu Borui , Sun Yan , et al. Degradation of organic pollutants by Fe/N Co-doped biochar via peroxymonosulfate activation: Synthesis, performance, mechanism and its potential for practical application[J]. Chemical Engineering Journal, 2020, 400, 125870.
doi: 10.1016/j.cej.2020.125870
|
90 |
Yang Lei , Bai Xue , Shi Juan , et al. Quasi-full-visible-light absorption by D35-TiO2/g-C3N4 for synergistic persulfate activation towards efficient photodegradation of micropollutants[J]. Applied Catalysis B-Environmental, 2019, 256, 117759.
doi: 10.1016/j.apcatb.2019.117759
|
91 |
Ozyildiz G , Olmez-Hanci T , Arslan-Alaton I . Effect of nano-scale, reduced graphene oxide on the degradation of bisphenol A in real tertiary treated wastewater with the persulfate/UV-C process[J]. Applied Catalysis B-Environmental, 2019, 254, 135- 144.
doi: 10.1016/j.apcatb.2019.04.092
|
92 |
Metheniti M E , Frontistis Z , Ribeiro R S , et al. Degradation of propyl paraben by activated persulfate using iron-containing magnetic carbon xerogels: Investigation of water matrix and process synergy effects[J]. Environmental Science and Pollution Research, 2018, 25 (35): 34801- 34810.
doi: 10.1007/s11356-017-0178-9
|
93 |
Frontistis Z . Degradation of the nonsteroidal anti-inflammatory drug piroxicam by iron activated persulfate: The role of water matrix and ultrasound synergy[J]. International Journal of Environmental Research and Public Health, 2018, 15 (11): 2600.
doi: 10.3390/ijerph15112600
|
94 |
Sisi A J , Fathinia M , Khataee A , et al. Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: Mechanism and ecotoxicological analysis[J]. Journal of Molecular Liquids, 2020, 308, 113018.
doi: 10.1016/j.molliq.2020.113018
|
95 |
Karimian S , Moussavi G , Fanaei F , et al. Shedding light on the catalytic synergies between Fe(Ⅱ) and PMS in vacuum UV(VUV/Fe/ PMS) photoreactors for accelerated elimination of pharmaceuticals: The case of metformin[J]. Chemical Engineering Journal, 2020, 400, 125896.
doi: 10.1016/j.cej.2020.125896
|
96 |
Cu Zhepei , Chen Weiming , Li Qibin , et al. Kinetics study of dinitrodiazophenol industrial wastewater treatment by a microwave-coupled ferrous-activated persulfate process[J]. Chemosphere, 2019, 215, 82- 91.
doi: 10.1016/j.chemosphere.2018.10.009
|
97 |
Chang Xinqiang , Lin Tao , Chen Wei , et al. A new perspective of membrane fouling control by ultraviolet synergic ferrous iron catalytic persulfate〔UV/Fe(Ⅱ)/PS〕 as pretreatment prior to ultrafiltration[J]. Science of the Total Environment, 2020, 737, 139711.
doi: 10.1016/j.scitotenv.2020.139711
|
98 |
Ghanbari F , Ahmadi M , Gohari F . Heterogeneous activation of peroxymonosulfate via nanocomposite CeO2-Fe3O4 for organic pollutants removal: The effect of UV and US irradiation and application for real wastewater[J]. Separation and Purification Technology, 2019, 228, 115732.
doi: 10.1016/j.seppur.2019.115732
|