1 |
QIAO Panzhe , WU Jiaxing , LI Haoze , et al. Plasmon Ag-promoted solar-thermal conversion on floating carbon cloth for seawater desalination and sewage disposal[J]. ACS Applied Materials & Interfaces, 2019, 11 (7): 7066- 7073.
URL
|
2 |
DONG Hang , SHEPSKO , CHELSEY S , et al. Hybrid ion exchange desalination(HIX-Desal) of impaired brackish water using pressurized carbon dioxide(CO2) as the source of energy and regenerant[J]. Environmental Science & Technology Letters, 2018, 5 (11): 701- 706.
URL
|
3 |
AHMED M A , TEWARI S . Capacitive deionization: Processes, materials and state of the technology[J]. Journal of Electroanalytical Chemistry, 2018, 813, 178- 192.
doi: 10.1016/j.jelechem.2018.02.024
|
4 |
CHEN Chao , JIANG Yilin , YE Zhaoyong , et al. Sustainably integrating desalination with solar power to overcome future freshwater scarcity in China[J]. Global Energy Interconnection, 2019, 2 (2): 98- 113.
doi: 10.1016/j.gloei.2019.07.009
|
5 |
GAO X , OMOSEBI A , HOLUBOWITCH N , et al. Capacitive deionization using alternating polarization: Effect of surface charge on salt removal[J]. Electrochimica Acta, 2017, 233, 249- 255.
doi: 10.1016/j.electacta.2017.03.021
|
6 |
HAWKS S A , RAMACHANDRAN A , CAMPBELL P G , et al. Performance metrics for the objective assessment of capacitive deionization systems[J]. Water Research, 2019, 152, 126- 137.
doi: 10.1016/j.watres.2018.10.074
|
7 |
张须媚, 王霜, 高娟娟, 等. 电容去离子技术在水处理中的应用[J]. 水处理技术, 2018, 44 (9): 16- 21.
URL
|
8 |
XING Wenle , LIANG Jie , TANG Wangwang , et al. Versatile applications of capacitive deionization(CDI)-based technologies[J]. Desalination, 2020, 482, 114390.
doi: 10.1016/j.desal.2020.114390
|
9 |
HAN Bing , CHENG Gong , WANG Yunkai , et al. Structure and functionality design of novel carbon and faradaic electrode materials for high-performance capacitive deionization[J]. Chemical Engineering Journal, 2019, 360, 364- 384.
doi: 10.1016/j.cej.2018.11.236
|
10 |
SINGH K , PORADA S , DE GIER H D , et al. Timeline on the application of intercalation materials in Capacitive Deionization[J]. Desalination, 2019, 455, 115- 134.
doi: 10.1016/j.desal.2018.12.015
|
11 |
CHEN Zhaolin , ZHANG Hongtao , WU Chunxu , et al. A study of electrosorption selectivity of anions by activated carbon electrodes in capacitive deionization[J]. Desalination, 2015, 369, 46- 50.
doi: 10.1016/j.desal.2015.04.022
|
12 |
YOON H , LEE J , KIM S , et al. Capacitive deionization with Ca-alginate coated-carbon electrode for hardness control[J]. Desalination, 2016, 392, 46- 53.
doi: 10.1016/j.desal.2016.03.019
|
13 |
LI Bei , ZHENG Tianye , RAN Sijia , et al. Performance recovery in degraded carbon-based electrodes for capacitive deionization[J]. Environmental Science & Technology, 2020, 54 (3): 1848- 1856.
URL
|
14 |
LIU Yihan , ZHANG Xiongfei , GU Xiao , et al. One-step turning leather wastes into heteroatom doped carbon aerogel for performance enhanced capacitive deionization[J]. Microporous and Mesoporous Materials, 2020, 303, 110303.
doi: 10.1016/j.micromeso.2020.110303
|
15 |
BIAN Yanhong , LIANG Peng , YANG Xufei , et al. Using activated carbon fiber separators to enhance the desalination rate of membrane capacitive deionization[J]. Desalination, 2016, 381, 95- 99.
doi: 10.1016/j.desal.2015.11.016
|
16 |
WANG Shuo , WANG Dazhi , JI Lijun , et al. Equilibrium and kinetic studies on the removal of NaCl from aqueous solutions by electrosorption on carbon nanotube electrodes[J]. Separation and Purification Technology, 2007, 58 (1): 12- 16.
doi: 10.1016/j.seppur.2007.07.005
|
17 |
XU Ke , LIU Yanhui , AN Zihan , et al. The polymeric conformational effect on capacitive deionization performance of graphene oxide/polypyrrole composite electrode[J]. Desalination, 2020, 486, 114407.
doi: 10.1016/j.desal.2020.114407
|
18 |
DIANBUDIYANTO W , LIU Shouheng . Outstanding performance of capacitive deionization by a hierarchically porous 3D architectural graphene[J]. Desalination, 2019, 152, 126- 137.
URL
|
19 |
SUFIANI O , ELISADIKI J , MACHUNDA R L , et al. Modification strategies to enhance electrosorption performance of activated carbon electrodes for capacitive deionization applications[J]. Journal of Electroanalytical Chemistry, 2019, 848, 113328.
doi: 10.1016/j.jelechem.2019.113328
|
20 |
CHEN Zhaolin , ZHANG Hongtao , WU Chunxu , et al. A study of the effect of carbon characteristics on capacitive deionization(CDI) performance[J]. Desalination, 2018, 433, 68- 74.
doi: 10.1016/j.desal.2017.11.036
|
21 |
MIN B H , CHOI J H , JUNG K Y . Improved capacitive deionization of sulfonated carbon/titania hybrid electrode[J]. Electrochimica Acta, 2018, 270, 543- 551.
doi: 10.1016/j.electacta.2018.03.079
|
22 |
HAQ O , CHOI D S , CHOI J , et al. Carbon electrodes with ionic functional groups for enhanced capacitive deionization performance[J]. Journal of Industrial and Engineering Chemistry, 2020, 83, 136- 144.
doi: 10.1016/j.jiec.2019.11.021
|
23 |
JUNG Y , YAN Y , KIM T , et al. Enhanced electrochemical stability of a Zwitterionic-Polymer-Functionalized electrode for capacitive deionization[J]. ACS Applied Materials & Interfaces, 2018, 10 (7): 6207- 6217.
URL
|
24 |
KIM K H , KANG D H , KIM M J , et al. Effect of C-F bonds introduced by fluorination on the desalination properties of activated carbon as the cathode for capacitive deionization[J]. Desalination, 2019, 457, 1- 7.
doi: 10.1016/j.desal.2018.12.005
|
25 |
DREYER D R , PARK S , BIELAWSKI C W , et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2009, 39 (1): 228- 240.
|
26 |
PORADA , S , ZHAO R , VAN DER WAL A , et al. Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58 (8): 1388- 1442.
doi: 10.1016/j.pmatsci.2013.03.005
|
27 |
ZHANG Xumei , XIE Kangjun , GAO Juanjuan , et al. Highly poreexpanded benzidine-functionalized graphene framework for enhanced capacitive deionization[J]. Desalination, 2018, 445, 149- 158.
doi: 10.1016/j.desal.2018.08.001
|
28 |
GONG Xuezhong , LIU Guozhen , LI Yingshun , et al. Functionalizedgraphene composites: Fabrication and applications in sustainable energy and environment[J]. Chemistry of Materials, 2016, 28 (22): 8082- 8118.
doi: 10.1021/acs.chemmater.6b01447
|
29 |
张树鹏, 宋海欧, 钱沁莱, 等. 增强功能化石墨烯分散性及热稳定性的共价修饰策略[J]. 化学通报, 2013, 76, 506- 511.
URL
|
30 |
钱悦月, 张树鹏, 高娟娟, 等. 石墨烯非共价功能化及其应用[J]. 化学通报, 2015, 78, 497- 504.
URL
|
31 |
MI Mengjuan , LIU Xiaojun , KONG Weiqing , et al. Hierarchical composite of N-doped carbon sphere and holey graphene hydrogel for high-performance capacitive deionization[J]. Desalination, 2019, 464, 18- 24.
doi: 10.1016/j.desal.2019.04.014
|
32 |
BAUTISTA-PATACSIL L , LAZARTE J P L , DIPASUPIL R C , et al. Deionization utilizing reduced graphene oxide-titanium dioxide nanotubes composite for the removal of Pb2+ and Cu2+[J]. Journal of Environmental Chemical Engineering, 2020, 8 (3): 103063.
doi: 10.1016/j.jece.2019.103063
|
33 |
HU Shen , XIE Kangjun , ZHANG Xumei , et al. Significantly enhanced capacitance deionization performance by coupling activated carbon with triethyltetramine-functionalized graphene[J]. Chemical Engineering Journal, 2020, 384, 123317.
doi: 10.1016/j.cej.2019.123317
|
34 |
SONG Haiou , WU Yifan , ZHANG Shupeng , et al. Mesoporous generation-inspired ultrahigh capacitive deionization performance by sono-assembled activated carbon/inter-connected graphene network architecture[J]. Electrochimica Acta, 2016, 205, 161- 169.
doi: 10.1016/j.electacta.2016.04.082
|
35 |
XING Fei , LI Tao , LI Junye , et al. Chemically exfoliated MoS2 for capacitive deionization of saline water[J]. Nano Energy, 2017, 31, 590- 595.
doi: 10.1016/j.nanoen.2016.12.012
|
36 |
JIA Feifei , SUN Kaige , YANG Bingqiao , et al. Defect-rich molybdenum disulfide as electrode for enhanced capacitive deionization from water[J]. Desalination, 2018, 446, 21- 30.
doi: 10.1016/j.desal.2018.08.024
|
37 |
WANG Qingmiao , JIA Feifei , SONG Shaoxian , et al. Hydrophilic MoS2/polydopamine(PDA) nanocomposites as the electrode for enhanced capacitive deionization[J]. Separation and Purification Technology, 2020, 236, 116298.
doi: 10.1016/j.seppur.2019.116298
|
38 |
TIAN Shichao , ZHANG Xihui , ZHANG Zhenghua . Capacitive deionization with MoS2/g-C3N4 electrodes[J]. Desalination, 2020, 479, 114348.
doi: 10.1016/j.desal.2020.114348
|
39 |
HOU C H , LIU N L , HSU H L , et al. Development of multi-walled carbon nanotube/poly(vinyl alcohol) composite as electrode for capacitive deionization[J]. Separation & Purification Technology, 2014, 130, 7- 14.
URL
|
40 |
MA Dongya , WANG Yue , CAI Yanmeng , et al. Multifunctional group sulfobutyl ether β-cyclodextrin polymer treated CNT as the cathode for enhanced performance in asymmetric capacitive deionization[J]. Electrochimica Acta, 2019, 313, 321- 330.
doi: 10.1016/j.electacta.2019.05.041
|
41 |
ZENG Tianyu , WANG Liwen , FENG Lu , et al. Two novel organic phosphorous-based MOFs: Synthesis, characterization and photocatalytic properties[J]. Dalton Transactions, 2019, 48 (2): 523- 534.
doi: 10.1039/C8DT04106G
|
42 |
ZONG Mingzhu , ZHANG Yuyan , LI Kexun , et al. Zeolitic imidazolate framework-8 derived two-dimensional N-doped amorphous mesoporous carbon nanosheets for efficient capacitive deionization[J]. Electrochimica Acta, 2020, 329, 135089.
doi: 10.1016/j.electacta.2019.135089
|
43 |
LIU Yong , XU Xintong , WANG Miao . Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization[J]. Chemical Communications, 2015, 51 (60): 12020- 12023.
doi: 10.1039/C5CC03999A
|
44 |
SHEN Jiaming , LI Yang , WANG Chaohai , et al. Hollow ZIFs-derived nanoporous carbon for efficient capacitive deionization[J]. Electrochimica Acta, 2018, 273, 34- 42.
doi: 10.1016/j.electacta.2018.04.004
|
45 |
ZHAO Yubo , ZHANG Yuyan , TIAN Pei , et al. Nitrogen-rich mesoporous carbons derived from zeolitic imidazolate framework-8 for efficient capacitive deionization[J]. Electrochimica Acta, 2019, 321, 134665.
doi: 10.1016/j.electacta.2019.134665
|
46 |
LI Yusen , CHEN Weiben , XING Guolong , et al. New synthetic strategies toward covalent organic frameworks[J]. Chemical Society Reviews, 2020, 49 (10): 2852- 2868.
doi: 10.1039/D0CS00199F
|
47 |
LIU Daohua , NING Xunan , HONG Yanxiang , et al. Covalent triazine-based frameworks as electrodes for high-performance membrane capacitive deionization[J]. Electrochimica Acta, 2019, 296, 327- 334.
doi: 10.1016/j.electacta.2018.10.044
|
48 |
LI Danping , NING Xunan , HUANG Yue , et al. Nitrogen-rich microporous carbon materials for high-performance membrane capacitive deionization[J]. Electrochimica Acta, 2019, 312, 251- 262.
doi: 10.1016/j.electacta.2019.04.172
|
49 |
XIE Zhengzheng , SHANG Xiaohong , YAN Junbin , et al. Biomassderived porous carbon anode for high-performance capacitive deionization[J]. Electrochimica Acta, 2018, 290, 666- 675.
doi: 10.1016/j.electacta.2018.09.104
|
50 |
LADO J J , ZORNITTA R L , VAZQUEZ , et al. Sugarcane biowastederived biochars as capacitive deionization electrodes for brackish water desalination and water-softening applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7 (23): 18992- 19004.
URL
|
51 |
ZHANG Lu , LIU Yong , LU Ting , et al. Cocoon derived nitrogen enriched activated carbon fiber networks for capacitive deionization[J]. Journal of Electroanalytical Chemistry, 2017, 804, 179- 184.
doi: 10.1016/j.jelechem.2017.09.062
|
52 |
MUTHUKUMARASWAMY R V , EDATHIL A A , KANNANGARA Y Y , et al. Tamarind shell derived N-doped carbon for capacitive deionization(CDI) studies[J]. Journal of Electroanalytical Chemistry, 2019, 848, 113307.
doi: 10.1016/j.jelechem.2019.113307
|