1 |
Karanasios K A , Vasiliadou I A , Pavlou S , et al. Hydrogenotrophic denitrification of potable water: A review[J]. Journal of Hazardous Materials, 2010, 180 (1/2/3): 20- 37.
|
2 |
Shrimali M , Singh K P . New methods of nitrate removal from water[J]. Environmental Pollution, 2001, 112 (3): 351- 359.
doi: 10.1016/S0269-7491(00)00147-0
|
3 |
Foglar L , Briski F , Sipos L , et al. High nitrate removal from synthetic wastewater with the mixed bacterial culture[J]. Bioresource Technology, 2005, 96 (8): 879- 888.
doi: 10.1016/j.biortech.2004.09.001
|
4 |
Weber K A , Achenbach L A , Coates J D . Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction[J]. Nature Reviews Microbiology, 2006, 4 (10): 752- 764.
doi: 10.1038/nrmicro1490
|
5 |
Di Capua F , Pirozzi F , Lens P N L , et al. Electron donors for autotrophic denitrification[J]. Chemical Engineering Journal, 2019, 362, 922- 937.
doi: 10.1016/j.cej.2019.01.069
|
6 |
Tian Tian , Yu Hanqing . Denitrification with non-organic electron donor for treating low C/N ratio wastewaters[J]. Bioresource Technology, 2020, 299, 122686.
doi: 10.1016/j.biortech.2019.122686
|
7 |
Straub K L , Benz M , Schink B , et al. Anaerobic, nitrate-dependent microbial oxidation of ferrous iron[J]. Applied and Environmental Microbiology, 1996, 62 (4): 1458- 1460.
doi: 10.1128/aem.62.4.1458-1460.1996
|
8 |
Hafenbradl D , Keller M , Dirmeier R , et al. Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions[J]. Archives of Microbiology, 1996, 166 (5): 308- 314.
doi: 10.1007/s002030050388
|
9 |
Chaudhuri S K , Lack J G , Coates J D . Biogenic magnetite formation through anaerobic biooxidation of Fe(Ⅱ)[J]. Applied and Environmental Microbiology, 2001, 67 (6): 2844- 2848.
doi: 10.1128/AEM.67.6.2844-2848.2001
|
10 |
王茹, 赵治国, 郑平, 等. 铁型反硝化: 一种新型废水生物脱氮技术[J]. 化工进展, 2019, 38 (4): 2003- 2010.
URL
|
11 |
张萌. 新型铁盐脱氮除磷技术的研究[D]. 杭州: 浙江大学, 2015.
|
12 |
Carlson H K , Clark I C , Melnyk R A , et al. Toward a mechanistic understanding of anaerobic nitrate-dependent iron oxidation: Balancing electron uptake and detoxification[J]. Frontiers in Microbiology, 2012, 3, 57- 57.
URL
|
13 |
Bird L J , Bonnefoy V , Newman D K . Bioenergetic challenges of microbial iron metabolisms[J]. Trends in Microbiology, 2011, 19 (7): 330- 340.
doi: 10.1016/j.tim.2011.05.001
|
14 |
Ferguson S J , Ingledew W J . Energetic problems faced by micro-organisms growing or surviving on parsimonious energy sources and at acidic pH: I. Acidithiobacillus ferrooxidans as a paradigm[J]. Biochimica et Biophysica Acta(BBA)-Bioenergetics, 2008, 1777 (12): 1471- 1479.
doi: 10.1016/j.bbabio.2008.08.012
|
15 |
Kumaraswamy R , Sjollema K , Kuenen G , et al. Nitrate-dependent[Fe(Ⅱ) EDTA]2-oxidation by Paracoccus ferrooxidans sp. nov., isolated from a denitrifying bioreactor[J]. Systematic and Applied Microbiology, 2006, 29 (4): 276- 286.
doi: 10.1016/j.syapm.2005.08.001
|
16 |
Rabus R , Widdel F . Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria[J]. Archives of Microbiology, 1995, 163 (2): 96- 103.
doi: 10.1007/BF00381782
|
17 |
Muehe E M , Gerhardt S , Schink B , et al. Ecophysiology and the energetic benefit of mixotrophic Fe(Ⅱ) oxidation by various strains of nitratereducing bacteria[J]. FEMS Microbiology Ecology, 2009, 70 (3): 335- 343.
doi: 10.1111/j.1574-6941.2009.00755.x
|
18 |
Su Junfeng , Shao Sicheng , Huang Tinglin , et al. Anaerobic nitratedependent iron(Ⅱ) oxidation by a novel autotrophic bacterium, Pseudomonas sp. SZF15[J]. Journal of Environmental chemical Engineering, 2015, 3 (3): 2187- 2193.
doi: 10.1016/j.jece.2015.07.030
|
19 |
Edwards K J , Rogers D R , Wirsen C O , et al. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and γ-Proteobacteria from the deep sea[J]. Applied and Environmental Microbiology, 2003, 69 (5): 2906- 2913.
doi: 10.1128/AEM.69.5.2906-2913.2003
|
20 |
Mattes A , Gould D , Taupp M , et al. A novel autotrophic bacterium isolated from an engineered wetland system links nitrate-coupled iron oxidation to the removal of As, Zn and S[J]. Water, Air, & Soil Pollution, 2013, 224 (4): 1490.
doi: 10.1007/s11270-013-1490-8
|
21 |
Li Baohua , Tian Changyan , Zhang Daoyong , et al. Anaerobic nitrate-dependent iron(Ⅱ) oxidation by a novel autotrophic bacterium, Citrobacter freundii strain PXL1[J]. Geomicrobiology Journal, 2014, 31 (2): 138- 144.
doi: 10.1080/01490451.2013.816393
|
22 |
Kelly D P , Wood A P . Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the beta-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain[J]. International Journal of Systematic and Evolutionary Microbiology, 2000, 50 (2): 547- 550.
doi: 10.1099/00207713-50-2-547
|
23 |
Beller H R , Chain P S G , Letain T E , et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans[J]. Journal of Bacteriology, 2006, 188 (4): 1473- 1488.
doi: 10.1128/JB.188.4.1473-1488.2006
|
24 |
Kanaparthi D , Conrad R . Role of humic substances in promoting autotrophic growth in nitrate-dependent iron-oxidizing bacteria[J]. Systematic and Applied Microbiology, 2015, 38 (3): 184- 188.
doi: 10.1016/j.syapm.2015.02.009
|
25 |
Weber K A , Pollock J , Cole K A , et al. Anaerobic nitrate-dependent iron(Ⅱ) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002[J]. Applied and Environmental Microbiology, 2006, 72 (1): 686- 694.
doi: 10.1128/AEM.72.1.686-694.2006
|
26 |
Tago K , Ishii S , Nishizawa T , et al. Phylogenetic and functional diversity of denitrifying bacteria isolated from various rice paddy and rice-soybean rotation fields[J]. Microbes and Environments, 2011, 26 (1): 30- 35.
doi: 10.1264/jsme2.ME10167
|
27 |
Strous M , Pelletier E , Mangenot S , et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J]. Nature, 2006, 440 (7085): 790- 794.
doi: 10.1038/nature04647
|
28 |
Oshiki M , Ishii S , Yoshida K , et al. Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation(anammox) bacteria[J]. Applied and Environmental Microbiology, 2013, 79 (13): 4087- 4093.
doi: 10.1128/AEM.00743-13
|
29 |
Wang Ru , Zheng Ping , Zhang Meng , et al. Nitrate-dependent anaerobic ferrous/iron oxidation microorganism: Review on its species, distribution and characteristics[J]. Microbiology China, 2015, 42 (12): 2448- 2456.
URL
|
30 |
Benz M , Brune A , Schink B . Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria[J]. Archives of Microbiology, 1998, 169 (2): 159- 165.
doi: 10.1007/s002030050555
|
31 |
Nielsen J L , Nielsen P H . Microbial nitrate-dependent oxidation of ferrous iron in activated sludge[J]. Environmental Science & Technology, 1998, 32 (22): 3556- 3561.
URL
|
32 |
Zhang Meng , Zheng Ping , Li Wei , et al. Performance of nitrate-dependent anaerobic ferrous oxidizing(NAFO) process: A novel prospective technology for autotrophic denitrification[J]. Bioresource Technology, 2015, 179, 543- 548.
doi: 10.1016/j.biortech.2014.12.036
|
33 |
Blothe M , Roden E E . Composition and activity of an autotrophic Fe(Ⅱ)-oxidizing, nitrate-reducing enrichment culture[J]. Applied and Environmental Microbiology, 2009, 75 (21): 6937- 6940.
doi: 10.1128/AEM.01742-09
|
34 |
Waki M , Yasuda T , Yokoyama H , et al. Nitrogen removal by co-occurring methane oxidation, denitrification, aerobic ammonium oxidation, and anammox[J]. Applied Microbiology and Biotechnology, 2009, 84 (5): 977- 985.
doi: 10.1007/s00253-009-2112-7
|
35 |
王茹. 铁型脱氮技术及其微生物学特性研究[D]. 杭州: 浙江大学, 2017.
|
36 |
Vaclavkova S , Schultz-Jensen N , Jacobsen O S , et al. Nitrate-controlled anaerobic oxidation of pyrite by Thiobacillus cultures[J]. Geomicrobiology Journal, 2015, 32 (5): 412- 419.
doi: 10.1080/01490451.2014.940633
|
37 |
Hohmann C , Winkler E , Morin G , et al. Anaerobic Fe(Ⅱ)-oxidizing bacteria show As resistance and immobilize As during Fe(Ⅲ) mineral precipitation[J]. Environmental Science & Technology, 2010, 44 (1): 94- 101.
URL
|
38 |
Seyfferth A L , Webb S M , Andrews J C , et al. Arsenic localization, speciation, and co-occurrence with iron on rice(Oryza sativa L.) roots having variable Fe coatings[J]. Environmental Science & Technology, 2010, 44 (2): 8108- 8113.
URL
|
39 |
Nitzsche K S , Weigold P , Lasekann-Behrens T , et al. Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam[J]. Chemosphere, 2015, 138, 47- 59.
doi: 10.1016/j.chemosphere.2015.05.032
|