1 |
Connor R, Ortigara A, Koncagül E, et al. The united nations world water development report 2017, wastewater: The untapped resource[R]. Paris: UNESCO, 2017.
|
2 |
Cote P , Peeters J , Adams N , et al. A new membrane-aerated biofilm reactor for low energy wastewater treatment: Pilot results[J]. Proceedings of the Water Environment Federation, 2015, (13): 4226- 4239.
URL
|
3 |
Li Tinggang , BaiRenbi , Liu Junxin . Distribution and composition of extracellular polymeric substances in membrane-aerated biofilm[J]. Journal of Biotechnology, 2008, 135 (1): 52- 57.
doi: 10.1016/j.jbiotec.2008.02.011
|
4 |
Li Yi , Zhang Kaisong . Pilot-scale treatment of polluted surface waters using membrane-aerated biofilm reactor(MABR)[J]. Biotechnology & Biotechnological Equipment, 2018, 32 (2): 376- 386.
URL
|
5 |
汪舒怡, 汪诚文, 黄霞. 用于废水处理的膜曝气生物反应器[J]. 环境污染治理技术与设备, 2006, 7 (6): 133- 139.
URL
|
6 |
Iorhemen O T , Hamza R A , Tay J H . Membrane fouling control in membrane bioreactors(MBRs) using granular materials[J]. Bioresource Technology, 2017, 240, 9- 24.
doi: 10.1016/j.biortech.2017.03.005
|
7 |
张文丽, 程方, 丁小洋, 等. 曝气压力对MABR中同步硝化反硝化脱氮的影响[J]. 环境工程, 2017, 35 (10): 55- 60.
URL
|
8 |
Zhong Huiyuan , Wang Hao , Tian Yang , et al. Treatment of polluted surface water with nylon silk carrier-aerated biofilm reactor (CABR)[J]. Bioresource Technology, 2019, 289, 121617.
doi: 10.1016/j.biortech.2019.121617
|
9 |
Lin Jiayi , Zhang Panyue , Li Gaopeng , et al. Effect of COD/N ratio on nitrogen removal in a membrane-aerated biofilm reactor[J]. International Biodeterioration & Biodegradation, 2016, 113, 74- 79.
URL
|
10 |
孙浩翔, 刘德钊, 蓝丽华, 等. 探究C/N对MABR处理水产养殖废水水质影响[J]. 环境科学与技术, 2019, 42 (2): 163- 169.
URL
|
11 |
李瑄伟, 金若菲, 周集体, 等. 硅胶膜曝气生物反应器同步短程硝化反硝化研究[J]. 工业水处理, 2015, 35 (1): 32- 36.
URL
|
12 |
王荣昌, 肖帆, 赵建夫. 生物膜厚度对膜曝气生物膜反应器硝化性能的影响[J]. 高校化学工程学报, 2015, (1): 151- 158.
doi: 10.3969/j.issn.1003-9015.2015.01.023
|
13 |
Wang Rongchang , Xiao Fan , Wang Yanan , et al. Determining the optimal transmembrane gas pressure for nitrification in membraneaerated biofilm reactors based on oxygen profile analysis[J]. Applied Microbiology & Biotechnology, 2016, 100 (17): 7699- 7711.
URL
|
14 |
Wang Rongchang , Zeng Xu , Wang Yanan , et al. Two-step startup improves pollutant removal in membrane-aerated biofilm reactors treating high-strength nitrogenous wastewater[J]. Environmental Science: Water Research & Technology, 2019, (1): 39- 50.
URL
|
15 |
Terada A , Hibiya K , Nagai J , et al. Nitrogen removal characteristics and biofilm analysis of a membrane-aerated biofilm reactor applicable to high-strength nitrogenous wastewater treatment[J]. Journal of Bioscience & Bioengineering, 2003, 95 (2): 170- 178.
URL
|
16 |
Lackner S , Holmberg M , Terada A , et al. Enhancing the formation and shear resistance of nitrifying biofilms on membranes by surface modification[J]. Water Research, 2009, 43 (14): 3469- 3478.
doi: 10.1016/j.watres.2009.05.011
|
17 |
Hou Feifei , Li Baoan , Xing Minghao , et al. Surface modification of PVDF hollow fiber membrane and its application in membrane aerated biofilm reactor(MABR)[J]. Bioresource Technology, 2013, 140, 1- 9.
doi: 10.1016/j.biortech.2013.04.056
|
18 |
Li Peng , Zhao Dexi , Zhang Yunge , et al. Oil-field waste water treatment by hybrid membrane-aerated biofilm reactor(MABR) system[J]. Chemical Engineering Journal, 2015, 264, 595- 602.
doi: 10.1016/j.cej.2014.11.131
|
19 |
Zheng M R , Liao B Q . Membrane aerated biofilm reactors for thermomechanical pulping pressate treatment[J]. International Journal of Chemical Reactor Engineering, 2016, 14 (5): 1017- 1024.
doi: 10.1515/ijcre-2015-0183
|
20 |
Shanahan J W , Semmens M J . Multipopulation model of membraneaerated biofilms[J]. Environmental Science and Technology, 2004, 38 (11): 3176- 3183.
doi: 10.1021/es034809y
|
21 |
Yu Changping , Liang Zhihua , et al. Nitrogen removal from wastewater using membrane aerated microbial fuel cell techniques[J]. Water Research, 2011, 45 (3): 1157- 1164.
doi: 10.1016/j.watres.2010.11.002
|
22 |
Dong Wenyi , Wang Hongjie , Li Weiguang , et al. Effect of DO on simultaneous removal of carbon and nitrogen by a membrane aeration/filtration combined bioreactor[J]. Journal of Membrane Science, 2009, 344 (1/2): 219- 224.
URL
|
23 |
刘琪, 程方, 张文丽, 等. 膜曝气生物反应器内DO分布变化及其对有机物和氮去除的影响[J]. 环境工程学报, 2017, 11 (12): 6246- 6251.
doi: 10.12030/j.cjee.201603176
|
24 |
张雨辰. 曝气膜生物反应器处理生活污水及强化除磷试验研究[D]. 济南: 山东建筑大学, 2019.
|
25 |
吴座栋. MABR处理微污染景观水体性能优化及其膜污染研究[D]. 天津: 天津工业大学, 2019.
|
26 |
楚红亮. MABR内流场对其性能及生物菌群分布结构的影响研究[D]. 天津: 天津工业大学, 2018.
|
27 |
Tian Hailong , Zhao Jieyu , Zhang Hongyu , et al. Bacterial community shift along with the changes in operational conditions in a membrane-aerated biofilm reactor[J]. Applied Microbiology and Biotechnology, 2015, 99 (7): 3279- 3290.
doi: 10.1007/s00253-014-6204-7
|
28 |
张楠. MABR内流场对生物膜性能的影响及反应器优化研究[D]. 天津: 天津工业大学, 2015.
|
29 |
Mei Xiang , Guo Zhongwei , Liu Juan , et al. Treatment of formaldehyde wastewater by a membrane-aerated biofilm reactor(MABR): The degradation of formaldehyde in the presence of the cosubstrate methanol[J]. Chemical Engineering Journal, 2019, 372, 673- 683.
doi: 10.1016/j.cej.2019.04.184
|
30 |
Lan Meichao , Li Mei , Liu Jun , et al. Coal chemical reverse osmosis concentrate treatment by membrane-aerated biofilm reactor system[J]. Bioresource Technology, 2018, 270, 120- 128.
doi: 10.1016/j.biortech.2018.09.011
|
31 |
Mei Rongwu , Li Renjie , Lin Hongjun , et al. A new approach to construct three-dimensional surface morphology of sludge flocs in a membrane bioreactor[J]. Bioresource Technology, 2016, 219, 521- 526.
doi: 10.1016/j.biortech.2016.08.005
|
32 |
Liu Rukang , Wang Qin , Li Mei , et al. Advanced treatment of coal chemical reverse osmosis concentrate with three-stage MABR[J]. RSC Advances, 2020, 10 (17): 10178- 10187.
doi: 10.1039/C9RA10574C
|
33 |
Tian Hailong , Xu Xingjian , Qu Jianhang , et al. Biodegradation of phenolic compounds in high saline wastewater by biofilms adhering on aerated membranes[J]. Journal of Hazardous Materials, 2020, 392, 122463.
doi: 10.1016/j.jhazmat.2020.122463
|
34 |
赵奭. 铁碳微电解-曝气膜生物反应器处理印染废水[J]. 水处理技术, 2019, 45 (3): 41- 43.
URL
|
35 |
Tian Hailong , Hu Yanzhuo , Xu Xingjian , et al. Enhanced wastewater treatment with high o-aminophenol concentration by two-stage MABR and its biodegradation mechanism[J]. Bioresource Technology, 2019, 289, 121649.
doi: 10.1016/j.biortech.2019.121649
|
36 |
Syron E , Semmens M J , Casey E . Performance analysis of a pilotscale membrane aerated biofilm reactor for the treatment of landfill leachate[J]. Chemical Engineering Journal, 2015, 273, 120- 129.
doi: 10.1016/j.cej.2015.03.043
|
37 |
Sevanthi R, Christenson D, Cummings E. Performance of a Full Scale MABR(CoMANDR 2.0) for pre-treatment of a habitation waste stream prior to desalination[C]//44th International Confernce on Environmental Systems, Tucson: Arizona, 2014.
|
38 |
Christenson D , Sevanthi R , MorseA , et al. Assessment of membraneaerated biological reactors(MABRs) for integration into space-based water recycling system architectures[J]. Gravitational and Space Research, 2018, 6 (2): 12- 27.
doi: 10.2478/gsr-2018-0007
|
39 |
Peeters J , Adams N , Long Z , et al. Demonstration of innovative MABR low-energy nutrient removal technology at Chicago MWRD[J]. Water Practice and Technology, 2017, 12 (4): 927- 936.
doi: 10.2166/wpt.2017.096
|
40 |
Aybar M , Perez-Calleja P , Li M , et al. Predation creates unique void layer in membrane-aerated biofilms[J]. Water Research, 2018, 149, 232- 242.
URL
|
41 |
Klein T , Zihlmann D , Derlon N , et al. Biological control of biofilms on membranes by metazoans[J]. Water Research, 2016, 88 (1): 20- 29.
URL
|
42 |
Derlon N , Peter-Varbanets M , Scheidegger A , et al. Predation influences the structure of biofilm developed on ultrafiltration membranes[J]. Water Research, 2012, 46 (10): 3323- 3333.
doi: 10.1016/j.watres.2012.03.031
|
43 |
Halan B , Letzel T , Schmid A , et al. Solid support membrane-aerated catalytic biofilm reactor for the continuous synthesis of(S)-styrene oxide at gram scale[J]. Biotechnology Journal, 2014, 9 (10): 1339- 1349.
doi: 10.1002/biot.201400341
|
44 |
Sun Jing , Dai Xiaohu , Liu Yiwen , et al. Sulfide removal and sulfur production in a membrane aerated biofilm reactor: Model evaluation[J]. Chemical Engineering Journal, 2016, 309, 454- 462.
|
45 |
Wu Jun , Zhang Yue . Evaluation of the impact of organic material on the anaerobic methane and ammonium removal in a membrane aerated biofilm reactor(MABR) based on the multispecies biofilm modeling[J]. Environmental Science and Pollution Research, 2017, 24 (2): 1677- 1685.
doi: 10.1007/s11356-016-7938-9
|
46 |
Da Silva T S , Matsumoto T , Dos Anjos M L , et al. Organic matter removal in a membrane-aerated biofilm reactor[J]. Journal of Environmental Engineering, 2018, 144 (8): 04018057.
doi: 10.1061/(ASCE)EE.1943-7870.0001393
|
47 |
张宏玉. MABR微生物群落结构的研究[D]. 天津: 天津大学, 2012.
|
48 |
曾庆楠, 吴云, 张宏伟, 等. 膜材料对膜曝气生物膜反应器性能影响的比较[J]. 化工学报, 2016, 67 (4): 414- 420.
URL
|
49 |
Castrillo M , Diez-Montero R , Esteban-Garcia A L , et al. Mass transfer enhancement and improved nitrification in MABR through specific membrane configuration[J]. Water Research, 2019, 152 (1): 1- 11.
URL
|
50 |
Wei Xin , Li Baoan , Zhao Song , et al. Mixed pharmaceutical wastewater treatment by integrated membrane-aerated biofilm reactor (MABR) system-A pilot-scale study[J]. Bioresource Technology, 2012, 122, 189- 195.
doi: 10.1016/j.biortech.2012.06.041
|
51 |
田海龙. MABR脱氮除碳效能及微生物膜特性研究[D]. 天津: 天津大学, 2015.
|
52 |
Li Xiaojin , Sun Shan , Badgley B D , et al. Nitrogen removal by granular nitritation-Anammox in an upflow membrane-aerated biofilm reactor[J]. Water Research, 2016, 94 (1): 23- 31.
URL
|