1 |
|
|
Ministry of Ecological Environment of the People’s Republic of China. State of China’s ecological environment bulletin of 2019[R]. Beijing: Ministry of Ecological Environment of the People’s Republic of China, 2020. doi: 10.1007/978-981-33-4806-6_16
|
2 |
LEE D, LEE J C, NAM J Y,et al. Degradation of sulfonamide antibiotics and their intermediates toxicity in an aeration⁃assisted non⁃thermal plasma while treating strong wastewater[J]. Chemosphere, 2018, 209:901-907. doi: 10.1016/j.chemosphere.2018.06.125
|
3 |
MEERBERGEN K, CRAUWELS S, WILLEMS K A,et al. Decolorization of reactive azo dyes using a sequential chemical and activated sludge treatment[J]. Journal of Bioscience and Bioengineering, 2017, 124(6):668-673. doi: 10.1016/j.jbiosc.2017.07.005
|
4 |
ZHONG Mingyu, TANG Jianhui, GUO Xinyu,et al. Occurrence and spatial distribution of organophosphorus flame retardants and plasticizers in the Bohai,Yellow and East China seas[J]. Science of the Total Environment, 2020, 741:140434. doi: 10.1016/j.scitotenv.2020.140434
|
5 |
KUMER A, SRIVAATAVA J K, MALLICK N,et al. Commercialization of bacterial cell factories for the sustainable production of polyhydroxyalkanoate thermoplastics:Progress and prospects[J]. Recent Patents on Biotechnology, 2015, 9(1):4-21. doi: 10.2174/2211550104666150615211414
|
6 |
WANG Yanqiu, MENG Guangcai, SHAN Mingjun,et al. Treatment of high⁃ammonia-nitrogen landfill leachate nanofiltration concentrate using an Fe⁃loaded Ni⁃foam⁃based electro⁃Fenton cathode[J]. Journal of Environmental Chemical Engineering, 2020, 8(5):104243. doi: 10.1016/j.jece.2020.104243
|
7 |
MANISHA V, HARITASH A K. Review of advanced oxidation processes(AOPs)for treatment of pharmaceutical wastewater[J]. Advances in Environmental Research,2020,9(1):1-17.
|
8 |
NIBEDITA P, VISHNU T, ANANTHA S T S,et al. Simultaneous removal of COD and ammoniacal nitrogen from dye intermediate manu⁃facturing industrial wastewater using Fenton oxidation method[J]. Applied Water Science, 2020, 10(11):62-72. doi: 10.1007/s13201-020-1151-1
|
9 |
GEORGI A, POLO M V, CRINCOLI K,et al. Accelerated catalytic Fenton reaction with traces of iron:An Fe-Pd⁃multicatalysis approach[J]. Environmental Science & Technology,2016,50(11):5882-5891.
|
10 |
WANG Mingwei, ZHAO Zhiqiang, ZHANG Yaobin. Sustainable strategy for enhancing anaerobic digestion of waste activated slud⁃ge:Driving dissimilatory iron reduction with Fenton sludge[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2):2220-2230. doi: 10.1021/acssuschemeng.7b03637
|
11 |
FRIESEN K J, ELMORSI T M, ABD⁃EI⁃AZIZ A S. Photochemical oxidation of short⁃chain polychlorinated n⁃alkane mixtures using H 2O 2/UV and the photo⁃Fenton reaction[J]. International Journal of Photoenergy, 2004, 6(2):81-88. doi: 10.1155/S1110662X04000121
|
12 |
GARCÍA J C, PEDROZA A M, DAZA C E. Magnetic Fenton and photo⁃Fenton⁃like catalysts supported on carbon nanotubes for wastewater treatment[J]. Water Air and Soil Pollution, 2017, 228(7):246-262. doi: 10.1007/s11270-017-3420-7
|
13 |
何东林. 基于γ-FeOOH非均相芬顿耦合半导体可见光催化体系的构筑及其催化机理研究[D]. 广州:华南理工大学,2019.
|
|
HE Donglin. Construction and catalytic mechanism of photocatalytic and heterogeneous fenton system based on γ-FeOOH cou⁃pled semiconductor with visible light activity[D]. Guangzhou:South China University of Technology,2019.
|
14 |
LEE S, PARK J. Hematite/graphitic carbon nitride nanofilm for Fenton and photocatalytic oxidation of methylene blue[J]. Sustainability, 2020, 12(7):2866-2882. doi: 10.3390/su12072866
|
15 |
|
|
WANG Zhenhua, ZHU Chenfu, DONG Houhuan,et al. Research for photo⁃catalysis activity of TiO 2 modified with nitrogen and plumbum[J]. Material Engineering, 2008(5):66-70. doi: JournalArticle/5aec2683c095d710d4fbceb1
|
16 |
ZHU Yanping, ZENG Chun, ZHU Runliang,et al. TiO 2/Schwertmannite nanocomposites as superior co⁃catalysts in heterogeneous photo⁃Fenton process[J]. Journal of Environmental Sciences, 2019, 80:208-217. doi: 10.1016/j.jes.2018.12.014
|
17 |
WANG Yifeng, MA Wanhong, CHEN Chuncheng,et al. Fe 3+/Fe 2+ cycling promoted by Ta 3N 5 under visible irradiation in Fenton degradation of organic pollutants[J]. Applied Catalysis B:Environmental, 2007, 75(3/4):256-263. doi: 10.1016/j.apcatb.2007.04.019
|
18 |
TRELLU C, PECHAUD Y, OTURAN N,et al. Comparative study on the removal of humic acids from drinking water by anodic oxidation and electro⁃Fenton processes:Mineralization efficiency and modelling[J]. Applied Catalysis B:Environmental, 2016, 194:32-41. doi: 10.1016/j.apcatb.2016.04.039
|
19 |
ZHANG Menghui, DONG Hui, ZHAO Liang,et al. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. Science of the Total Environment, 2019, 670:110-121. doi: 10.1016/j.scitotenv.2019.03.180
|
20 |
夏艳. 电芬顿和多相芬顿处理甲硝唑废水的研究[D]. 武汉:武汉大学,2019.
|
|
XIA Yan. The study on degradation of metronidazole antibiotic wastewater by electro⁃Fenton and heterogeneous Fenton[D]. Wuhan:Wuhan University,2019.
|
21 |
TING Wangping, LU Mingchun, HUANG Yaohui. The reactor design and comparison of Fenton,electro⁃Fenton and photoelectro⁃Fenton processes for mineralization of benzene sulfonic acid(BSA)[J]. Journal of Hazardous Materials, 2008, 156(1/2/3):421-427. doi: 10.1016/j.jhazmat.2007.12.031
|
22 |
DENG Fengxia, ORLANDO G R, HUGO O V,et al. Iron⁃foam as a heterogeneous catalyst in the presence of tripolyphosphate electrolyte for improving electro⁃Fenton oxidation capability[J]. Electrochimica Acta, 2018, 272:176-183. doi: 10.1016/j.electacta.2018.03.160
|
23 |
SU Pei, ZHOU Minghua, REN Gengbo,et al. A carbon nanotube⁃confined iron modified cathode with prominent stability and activity for heterogeneous electro⁃Fenton reactions[J]. Journal of Materials Chemistry A, 2019, 7(42):24408-24419. doi: 10.1039/C9TA07491K
|
24 |
WANG Yujing, ZHAO Hongying, GAO Junxia,et al. Rapid mineralization of azo⁃dye wastewater by microwave synergistic electro⁃fenton oxidation process[J]. The Journal of Physical Chemistry C, 2012, 116(13):7457-7463. doi: 10.1021/jp212590f
|
25 |
|
|
ZHANG Zhanmei. Experimental study on treatment of azo dye acid green B by advanced oxidation processes based on ultrasonic irradiation[D]. Chongqing:Chongqing University, 2009. doi: 10.7666/d.y1666504
|
26 |
LABRADA K G, CUELLO D R A, SANCHEZ I S,et al. Optimization of ciprofloxacin degradation in wastewater by homogeneous sono⁃Fenton process at high frequency[J]. Journal of Environmental Science and Health,Part A, 2018, 53(13):1139-1148. doi: 10.1080/10934529.2018.1530177
|
27 |
CAMARGO⁃PEREA A L, RUBIO⁃CLEMENTE A, PEÑUELA G A. Use of ultrasound as an advanced oxidation process for the degradation of emerging pollutants in water[J]. Water, 2020, 12(4):1068. doi: 10.3390/w12041068
|
28 |
WANG Chikang, SHIH Y. Degradation and detoxification of diazinon by sono⁃Fenton and sono⁃Fenton⁃like processes[J]. Separation and Purification Technology, 2015, 140(22):6-12. doi: 10.1016/j.seppur.2014.11.005
|
29 |
MINERO C, LUCCHIARI M, VIONE D,et al. Fe(Ⅲ)⁃enhanced sonochemical degradation of methylene blue in aqueous solution[J]. Environmental Science & Technology, 2005, 39(22):8936-8942. doi: 10.1021/es050314s
|
30 |
YAN Qingyun, ZHANG Jinlong, XING Mingyang. Cocatalytic Fenton reaction for pollutant control[J]. Cell Reports Physical Science, 2020, 1(8):100149. doi: 10.1016/j.xcrp.2020.100149
|
31 |
OVIEDO C, NAVARRETE A B J, CONTRERAS H M. Zn-EDTA degradation by catechol⁃driven fenton reaction[J]. Quimica Nova, 2012, 35(9):1772-1775. doi: 10.1590/s0100-40422012000900013
|
32 |
QIN Yaxin, SONGT Fahui, AI Zhihui,et al. Protocatechuic acid promoted alachlor degradation in Fe(Ⅲ)/H 2O 2 Fenton system[J]. Environmental Science & Technology, 2015, 49(13):7948-7956. doi: 10.1021/es506110w
|
33 |
HUANG Xiaopeng, HOU Xiaojing, JIA Falong,et al. Ascorbate⁃promoted surface iron cycle for efficient heterogeneous Fenton alachlor degradation with hematite nanocrystals[J]. ACS Applied Materials & Interfaces, 2017, 9(10):8751-8758. doi: 10.1021/acsami.6b16600
|
34 |
SUBRAMANIAN G, MADRAS G. Remarkable enhancement of Fenton degradation at a wide pH range promoted by thioglycolic acid[J]. Chemical Communications, 2017, 53(6):1136-1139. doi: 10.1039/c6cc09962a
|
35 |
HE Dongqin, ZHANG Yingjie, PEI Danni,et al. Degradation of benzoic acid in an advanced oxidation process:The effects of reducing agents[J]. Journal of Hazardous Materials, 2020, 382:121090. doi: 10.1016/j.jhazmat.2019.121090
|
36 |
FAN Ling, XIE Jinliang, ZHANG Zhiling,et al. Magnetically recoverable Fe 3O 4@polydopamine nanocomposite as an excellent co⁃catalyst for Fe 3+ reduction in advanced oxidation processes[J]. Journal of Environmental Sciences, 2020, 92:69-78. doi: 10.1016/j.jes.2020.02.006
|
37 |
CAO Zhanfang, WEN Xin, CHEN Pei,et al. Synthesis of a novel heterogeneous fenton catalyst and promote the degradation of methylene blue by fast regeneration of Fe 2+ [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2018, 549:94-104. doi: 10.1016/j.colsurfa.2018.04.009
|
38 |
NI Dongjing, ZHANG Jinfei, WANG Xiyi,et al. Hydroxyl radical⁃dominated catalytic oxidation in neutral condition by axially coordinated iron phthalocyanine on mercapto⁃functionalized carbon nanotubes[J]. Industrial & Engineering Chemistry Research, 2017, 56(11):2899-2907. doi: 10.1021/acs.iecr.6b04726
|
39 |
LIU Jingjing, WU Min, PAN Yutong,et al. Biodegradable nanoscale coordination polymers for targeted tumor combination therapy with oxidative stress amplification[J]. Advanced Functional Materials, 2020, 30(13):1908865. doi: 10.1002/adfm.201908865
|
40 |
SEKAR R, DICHRISTINA T J. Degradation of the recalcitrant oil spill components anthracene and pyrene by a microbially driven Fenton reaction[J]. Fems Microbiology Letters, 2017, 364(21):1-7. doi: 10.1093/femsle/fnx203
|
41 |
HU Yi, LI Yulian, HE Junyong,et al. EDTA-Fe(Ⅲ) Fenton⁃like oxidation for the degradation of malachite green[J]. Journal of Environmental Management, 2018, 226:256-263. doi: 10.1016/j.jenvman.2018.08.029
|
42 |
DONG Weiyang, JIN Yaoyao, ZHOU Kang,et al. Efficient degradation of pharmaceutical micropollutants in water and wastewater by Fe Ⅲ-NTA⁃catalyzed neutral photo⁃Fenton process[J]. Science of the Total Environment, 2019, 688:513-520. doi: 10.1016/j.scitotenv.2019.06.315
|
43 |
CUERVO L E, SALMORIA A D, MOREIRA K T,et al. Solar photo⁃Fenton⁃like process at neutral pH:Fe(Ⅲ)-EDDS complex formation and optimization of experimental conditions for degradation of pharmaceuticals[J]. Catalysis Today, 2019, 328:259-266. doi: 10.1016/j.cattod.2019.01.006
|
44 |
WANG Nan, ZHU Lihua, LEI Ming,et al. Ligand⁃induced drastic enhancement of catalytic activity of nano⁃BiFeO 3 for oxidative degradation of bisphenol A[J]. ACS Catalysis, 2011, 1(10):1193-1202. doi: 10.1021/cs2002862
|
45 |
BEATRIZ C S, JOAO A L P, RAQUEL F P N. Influence of dihydroxybenzenes on paracetamol and ciprofloxacin degradation and iron(Ⅲ)reduction in Fenton processes[J]. Environmental Science and Pollution Research International, 2017, 24(7):6157-6164. doi: 10.1007/s11356-016-6402-1
|
46 |
ZHOU Wei, GAO Jihui, ZHAO Haiqian,et al. The role of quinone cycle in Fe 2+-H 2O 2 system in the regeneration of Fe 2+ [J]. Environmental Technology, 2017, 38(15):1887-1896. doi: 10.1080/09593330.2016.1240241
|
47 |
SOUSA J L, AGUIAR A. Influence of aromatic additives on bismarck brown Y dye color removal treatment by Fenton proces⁃ses[J]. Environmental Science and Pollution Research International, 2017, 24(34):26734-26743. doi: 10.1007/s11356-017-0316-4
|
48 |
ZHOU Peng, ZHANG Jing, XIONG Zhaokun,et al. C 60 Fullerol promoted Fe(Ⅲ)/H 2O 2 Fenton oxidation: Role of photosensitive Fe(Ⅲ)-Fullerol complex[J]. Applied Catalysis B:Environmental, 2020, 265:118264. doi: 10.1016/j.apcatb.2019.118264
|
49 |
SANTANA C S, NICODEMOS R M D, VIEIRA V C C,et al. Kinetic evaluation of dye decolorization by Fenton processes in the presence of 3-hydroxyanthranilic acid[J]. International Journal of Environmental Research and Public Health, 2019, 16(9):1-16. doi: 10.3390/ijerph16091602
|
50 |
Huanli LÜ, ZHAO Hongying, CAO Tongcheng,et al. Efficient degradation of high concentration azo⁃dye wastewater by heterogeneous Fenton process with ironbased metal-organic framework[J]. Journal of Molecular Catalysis. A:Chemical, 2015, 400:81-89. doi: 10.1016/j.molcata.2015.02.007
|
51 |
TANG Juntao, WANG Jianlong. Metal organic framework with coordinatively unsaturated sites as efficient Fenton⁃like catalyst for enhanced degradation of sulfamethazine[J]. Environmental Science & Technology, 2018, 52(9):5367-5377. doi: 10.1021/acs.est.8b00092
|
52 |
SILVA A C, OLIVEIRA D Q L, OLIVEIRA L C A,et al. Nb⁃containing hematites Fe 2- x Nb x O 3:The role of Nb 5+ on the reactivity in presence of the H 2O 2 or ultraviolet light[J]. Applied Catalysis A:General, 2009, 357(1):79-84. doi: 10.1016/j.apcata.2009.01.014
|
53 |
XING Mingyang, XU Wenjing, DONG Chencheng,et al. Metal sulfides as excellent co⁃catalysts for H 2O 2 decomposition in advanced oxidation processes[J]. Chem, 2018, 4(6):1359-1372. doi: 10.1016/j.chempr.2018.03.002
|
54 |
CHEN Yu, ZHANG Gong, LIU Huijuan,et al. Confining free radicals in close vicinity to contaminants enables ultrafast Fenton⁃like processes in the interspacing of MoS 2 membranes[J]. Angewandte Chemie International Edtion, 2019, 58(24):8134-8138. doi: 10.1002/anie.201903531
|
55 |
SHEN Bin, DONG Chencheng, JI Jiahui,et al. Efficient Fe(Ⅲ)/Fe(Ⅱ)cycling triggered by MoO 2 in Fenton reaction for the degradation of dye molecules and the reduction of Cr(Ⅵ)[J]. Chinese Chemical Letters, 2019, 30(12):2205-2210. doi: 10.1016/j.cclet.2019.09.052
|
56 |
YI Qiuying, JI Jiahui, SHEN Bin,et al. Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the environment[J]. Environmental Science & Technology, 2019, 53(16):9725-9733. doi: 10.1021/acs.est.9b01676
|
57 |
ZHAG Hui, LIU Jiangou, Changjin OU,et al. Reuse of Fenton sludge as an iron source for NiFe 2O 4 synthesis and its application in the Fenton⁃based process[J]. Journal of Environmental Sciences, 2017, 53:1-8. doi: 10.1016/j.jes.2016.05.010
|
58 |
DENG Ruoyu, HE Qiang, YANG Dongxu,et al. Enhanced synergistic performance of nano⁃Fe 0-CeO 2 composites for the degradation of diclofenac in DBD plasma[J]. Chemical Engineering Journal, 2021, 406:126884. doi: 10.1016/j.cej.2020.126884
|
59 |
NIU Hongyun, ZHENG Yang, WANG Saihua,et al. Continuous generation of hydroxyl radicals for highly efficient elimination of chlorophenols and phenols catalyzed by heterogeneous Fenton⁃like catalysts yolk/shell Pd@Fe 3O 4@metal organic frameworks[J]. Journal of Hazardous Materials, 2018, 346:174-183. doi: 10.1016/j.jhazmat.2017.12.027
|
60 |
TANG Juntao, WANG Jianlong. Fenton⁃like degradation of sulfamethoxazole using Fe⁃based magnetic nanoparticles embedded in⁃to mesoporous carbon hybrid as an efficient catalyst[J]. Chemical Engineering Journal, 2018, 351:1085-1094. doi: 10.1016/j.cej.2018.06.169
|
61 |
XIONG Xinmei, SUN Yuankui, SUN Bo,et al. Enhancement of the advanced Fenton process by weak magnetic field for the degradation of 4-nitrophenol[J]. RSC Advances, 2015, 5(18):13357-13365. doi: 10.1039/c4ra16318d
|
62 |
SUN Meng, CHU Chiheng, GENG Fanglan,et al. Reinventing Fenton chemistry:Iron oxychloride nanosheet for pH⁃insensitive H 2O 2 activation[J]. Environmental Science & Technology Letters, 2018, 5(3):186-191. doi: 10.1021/acs.estlett.8b00065
|
63 |
LIU Xin, FAN Jinhong, LIU Zhongxing,et al. Elimination of 4-chlorophenol in aqueous solution by the novel Pd/MIL-101(Cr)-hydrogen⁃accelerated catalytic fenton system[J]. Applied Organometallic Chemistry, 2019, 33(11):1-15. doi: 10.1002/aoc.5194
|
64 |
CHEN Mantang, ZHANG Zhimin, ZHU Lihua,et al. Bisulfite⁃induced drastic enhancement of bisphenol A degradation in Fe 3+-H 2O 2 Fenton system[J]. Chemical Engineering Journal, 2019, 361:1190-1197. doi: 10.1016/j.cej.2018.12.170
|
65 |
ZHOU Peng, REN Wei, NIE Gang,et al. Fast and long⁃lasting Fe(Ⅲ) reduction by boron toward green and accelerated Fenton chemistry[J]. Angewandte Chemie International Edtion, 2020, 59(38):16517-16526. doi: 10.1002/anie.202007046
|