1 |
ENNING D, GARRELFS J. Corrosion of iron by sulfate-reducing bacteria:New views of an old problem[J]. Applied and Environmental Microbiology, 2014, 80(4):1226-1236. doi: 10.1128/aem.02848-13
|
2 |
SUN Dongxu, WU Ming, XIE Fei. Effect of sulfate-reducing bacteria and cathodic potential on stress corrosion cracking of X70 steel in sea-mud simulated solution[J]. Materials Science and Engineering:A, 2018, 721:135-144. doi: 10.1016/j.msea.2018.02.007
|
3 |
WANG Hua, JU L K, CASTANEDA H,et al. Corrosion of carbon steel C1010 in the presence of iron oxidizing bacteria Acidithiobacillus ferrooxidans [J]. Corrosion Science, 2014, 89:250-257. doi: 10.1016/j.corsci.2014.09.005
|
4 |
WU Tangqing, XU Jin, SUN Cheng,et al. Microbiological corrosion of pipeline steel under yield stress in soil environment[J]. Corrosion Science, 2014, 88:291-305. doi: 10.1016/j.corsci.2014.07.046
|
5 |
马刚,顾艳红,赵杰. 硫酸盐还原菌对钢材腐蚀行为的研究进展[J]. 中国腐蚀与防护学报,2021,41(3):289-297.
|
|
MA Gang, GU Yanhong, ZHAO Jie. Research progress on sulfate-reducing bacteria induced corrosion of steels[J]. Journal of Chinese Society for Corrosion and Protection,2021,41(3):289-297.
|
6 |
|
|
QI Peng, WAN Yi, ZENG Yan,et al. Rapid detection methods for sulfate-reducing bacteria in marine environments[J]. Journal of Chinese Society for Corrosion and Protection, 2019, 39(5):387-394. doi: 10.11902/1005.4537.2019.161
|
7 |
李鑫,尚东芝,于浩波,等. 油气管道SRB腐蚀研究新进展[J]. 表面技术,2021,50(2):211-220.
|
|
LI Xin, SHANG Dongzhi, YU Haobo,et al. Research progress on oil & gas pipeline corrosion induced by SRB[J]. Surface Technology,2021,50(2):211-220.
|
8 |
CHEN Yajie, TANG Qiong, SENKO J M,et al. Long-term survival of Desulfovibrio vulgaris on carbon steel and associated pitting corrosion[J]. Corrosion Science, 2015, 90:89-100. doi: 10.1016/j.corsci.2014.09.016
|
9 |
XU Dake, GU Tingyue. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm[J]. International Biodeterioration & Biodegradation, 2014, 91:74-81. doi: 10.1016/j.ibiod.2014.03.014
|
10 |
|
|
CHEN Xu, GAO Fengjiao, SONG Wuqi,et al. Effects of CO 2 on SRB influenced corrosion behavior of X70 steel in near-neutral pH solution[J]. Corrosion Science and Protection Technology, 2017, 29(2):103-109. doi: 10.11903/1002.6495.2016.102
|
11 |
LI Ming, ZHOU Minghua, TIAN Xiaoyu,et al. Microbial fuel cell(MFC) power performance improvement through enhanced microbial electrogenicity[J]. Biotechnology Advances, 2018, 36(4):1316-1327. doi: 10.1016/j.biotechadv.2018.04.010
|
12 |
KUSHKEVYCH I, ABDULINA D, KOVÁČ J,et al. Adenosine-5’-phosphosulfate- and sulfite reductases activities of sulfate-reducing bacteria from various environments[J]. Biomolecules, 2020, 10(6):921. doi: 10.3390/biom10060921
|
13 |
VESTER F, INGVORSEN K. Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer[J]. Applied and Environmental Microbiology, 1998, 64(5):1700-1707. doi: 10.1128/aem.64.5.1700-1707.1998
|
14 |
DU Zhuwei, LI Haoran, GU Tingyue. A state of the art review on microbial fuel cells:A promising technology for wastewater treatment and bioenergy[J]. Biotechnology Advances, 2007, 25(5):464-482. doi: 10.1016/j.biotechadv.2007.05.004
|
15 |
|
|
HE Shimei, TIAN Jianlin, YU Weiming,et al. Rapid determination of SRB in circulating cooling water by test-bottle[J]. Industrial Water Treatment, 2004, 24(1):52-53. doi: 10.11894/1005-829x.2004.24(1).52
|
16 |
BORISOV S M, WOLFBEIS O S. Optical biosensors[J]. Chemical Reviews, 2008, 108(2):423-461. doi: 10.1021/cr068105t
|
17 |
MAXWELL S, ALLAN HAMILTON W A. Modified radiorespirometric assay for determining the sulfate reduction activity of biofilms on metal surfaces[J]. Journal of Microbiological Methods, 1986, 5(2):83-91. doi: 10.1016/0167-7012(86)90004-7
|
18 |
KIM H J, BENNETTO H P, HALABLAB M A,et al. Performance of an electrochemical sensor with different types of liposomal mediators for the detection of hemolytic bacteria[J]. Sensors and Actuators B:Chemical, 2006, 119(1):143-149. doi: 10.1016/j.snb.2005.12.013
|
19 |
李婉义,向望清,郭稚弧. 三碘化亚甲基蓝法测定硫酸盐还原菌菌量[J]. 油田化学,1991,8(3):72-75.
|
|
LI Wanyi, XIANG Wangqing, GUO Zhihu. Quantitative determination of sulphate-reducing bacteria by triiodated methylene blue method[J]. Oilfield Chemistry,1991,8(3):72-75.
|
20 |
KIMURA H, SHIBUYA N, KIMURA Y. Hydrogen sulfide is a signaling molecule and a cytoprotectant[J]. Antioxidants & Redox Signaling, 2012, 17(1):45-57. doi: 10.1089/ars.2011.4345
|
21 |
AI Qin, LIANG Gang, ZHANG Huimin,et al. Control of sulfate concentration by miR395-targeted APS genes in Arabidopsis thaliana [J]. Plant Diversity, 2016, 38(2):92-100. doi: 10.1016/j.pld.2015.04.001
|
22 |
赵佳怡,甄世军,张翠云,等. 深部热水硫酸盐还原菌微滴数字PCR检测技术的建立与应用[J]. 微生物学通报,2020,47(11):3756-3767.
|
|
ZHAO Jiayi, ZHEN Shijun, ZHANG Cuiyun,et al. Development and application of a droplet digital PCR technique for detection of sulfate-reducing bacteria in deep geothermal water[J]. Microbiology China,2020,47(11):3756-3767.
|
23 |
BEN-DOV E, BRENNER A, KUSHMARO A. Quantification of sulfate-reducing bacteria in industrial wastewater,by real-time polymerase chain reaction(PCR) using dsrA and apsA genes[J]. Microbial Ecology, 2007, 54(3):439-451. doi: 10.1007/s00248-007-9233-2
|
24 |
魏利,马放. 油田硫酸盐还原菌APS-MPN-PCR快速定量检测方法[J]. 西安石油大学学报(自然科学版),2007,22(1):91-94.
|
|
WEI Li, MA Fang. A fast quantitative detection method of oilfield sulfate reducing bacteria[J]. Journal of Xi’an Shiyou University(Natural Science Edition),2007,22(1):91-94.
|
25 |
SCHEID D, STUBNER S, CONRAD R. Identification of rice root associated nitrate,sulfate and ferric iron reducing bacteria during root decomposition[J]. FEMS Microbiology Ecology, 2004, 50(2):101-110. doi: 10.1016/j.femsec.2004.06.001
|
26 |
|
|
WANG Mingyi, YUAN Xiaoyan, SONG Xuezhen,et al. Application of fluorescence in situ hybridization(FISH) to detection of sulfate-reducing bacteria[J]. China Journal of Modern Medicine, 2008, 18(3):302-304. doi: 10.3969/j.issn.1005-8982.2008.03.012
|
27 |
|
|
ZHANG Wei, LIU Congqiang, LIU Taoze,et al. Application of florescence in situ hybridization to detecting Karst mountainous soil sulfate-reducing bacterium[J]. Microbiology, 2008, 35(8):1273-1277. doi: 10.3969/j.issn.0253-2654.2008.08.020
|
28 |
LIU Hongwei, FRANK CHENG Y. Mechanism of microbiologically influenced corrosion of X52 pipeline steel in a wet soil containing sulfate-reduced bacteria[J]. Electrochimica Acta, 2017, 253:368-378. doi: 10.1016/j.electacta.2017.09.089
|
29 |
BHAGOBATY R K. Culture dependent methods for enumeration of sulphate reducing bacteria(SRB) in the oil and gas industry[J]. Reviews in Environmental Science and Bio/Technology, 2014, 13(1):11-16. doi: 10.1007/s11157-014-9331-9
|
30 |
|
|
|
31 |
LEROY C, DELBARRE C, GHILLEBAERT F,et al. Effects of commercial enzymes on the adhesion of a marine biofilm-forming bacterium[J]. Biofouling, 2008, 24(1):11-22. doi: 10.1080/08927010701784912
|
32 |
LÄNGE K, RAPP B E, RAPP M. Surface acoustic wave biosensors:A review[J]. Analytical and Bioanalytical Chemistry, 2008, 391(5):1509-1519. doi: 10.1007/s00216-008-1911-5
|
33 |
|
|
ZHU Dan, LI Qiangqiang, PANG Xiumei,et al. Application of the impedance spectrum in the electrochemical sensor research[J]. Chemical Sensors, 2016, 36(1):42-47. doi: 10.3969/j.issn.1008-2298.2016.01.007
|
34 |
QI Peng, ZHANG Dun, WAN Yi. Determination of sulfate-reducing bacteria with chemical conversion from ZnO nanorods arrays to ZnS arrays[J]. Sensors and Actuators B:Chemical, 2013, 181:274-279. doi: 10.1016/j.snb.2013.01.076
|
35 |
ASIF M, AZIZ A, ASHRAF G,et al. Facet-inspired core-shell gold nanoislands on metal oxide octadecahedral heterostructures:High sensing performance toward sulfide in biotic fluids[J]. ACS Applied Materials & Interfaces, 2018, 10(43):36675-36685. doi: 10.1021/acsami.8b12186
|
36 |
WAN Yi, QI Peng, ZHANG Dun,et al. Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay[J]. Biosensors and Bioelectronics, 2012, 33(1):69-74. doi: 10.1016/j.bios.2011.12.033
|
37 |
贺子君,毛一丹,谭学才,等. 基于CdS:Mn敏化TiO2纳米管的光电化学传感器用于硫酸盐还原菌的检测[J]. 分析科学学报,2021,37(1):35-40.
|
|
HE Zijun, MAO Yidan, TAN Xuecai,et al. Photoelectrochemical sensor based on CdS:Mn sensitized TiO2 nanotubes for the detection of sulfate-reducing bacteria[J]. Journal of Analytical Science,2021,37(1):35-40.
|
38 |
ZHANG Haiya, TIAN Yimei, WAN Jianmei,et al. Study of biofilm influenced corrosion on cast iron pipes in reclaimed water[J]. Applied Surface Science, 2015, 357:236-247. doi: 10.1016/j.apsusc.2015.09.021
|
39 |
LI Yingchao, XU Dake, CHEN Changfeng,et al. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry:A review[J]. Journal of Materials Science & Technology, 2018, 34(10):1713-1718. doi: 10.1016/j.jmst.2018.02.023
|
40 |
LI Qiushi, WANG Jihui, XING Xuteng,et al. Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions[J]. Bioelectrochemistry, 2018, 122:40-50. doi: 10.1016/j.bioelechem.2018.03.003
|
41 |
LIU Hongwei, GU Tingyue, ZHANG Guoan,et al. Corrosion of X80 pipeline steel under sulfate-reducing bacterium biofilms in simulated CO 2-saturated oilfield produced water with carbon source starvation[J]. Corrosion Science, 2018, 136:47-59. doi: 10.1016/j.corsci.2018.02.038
|
42 |
|
|
LIU Wei, ZHAO Yanliang, LU Minxu. Corrosion electrochemical characteristics of X60 pipeline steel in SRB and CO 2 coexistence environment[J]. Acta Physico-Chimica Sinica, 2008, 24(3):393-399. doi: 10.3866/pku.whxb20080307
|
43 |
|
|
SHU Yun, YAN Maocheng, WEI Yinghua,et al. Characteristics of SRB biofilm and microbial corrosion of X80 pipeline steel[J]. Acta Metallurgica Sinica, 2018, 54(10):1408-1416. doi: 10.11900/0412.1961.2018.00069
|
44 |
HOMBORG A M, LEON MORALES C F, TINGA T,et al. Detection of microbiologically influenced corrosion by electrochemical noise transients[J]. Electrochimica Acta, 2014, 136:223-232. doi: 10.1016/j.electacta.2014.05.102
|
45 |
DONG Zehua, SHI Wei, RUAN Hongmei,et al. Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique[J]. Corrosion Science, 2011, 53(9):2978-2987. doi: 10.1016/j.corsci.2011.05.041
|
46 |
AL-HITTI I K, MOODY G J, THOMAS J D R. Sulphide ion-selective electrode studies concerning Desulfovibrio species of sulphate-reducing bacteria[J]. Analyst, 1983, 108(1291):1209-1220. doi: 10.1039/an9830801209
|
47 |
YE Xiangyi, QI Peng, SUN Yan,et al. A high flexibility all-solid contact sulfide selective electrode using a graphene transducer[J]. Analytical Methods:Advancing Methods and Applications, 2020, 12(24):3151-3155. doi: 10.1039/d0ay00420k
|