1 |
ANTONKIEWICZ J, POPŁAWSKA A, KOŁODZIEJ B,et al. Application of ash and municipal sewage sludge as macronutrient sources in sustainable plant biomass production[J]. Journal of Environmental Management, 2020, 264:110450. doi: 10.1016/j.jenvman.2020.110450
|
2 |
FENG Jinxi, ZHANG Tiantian, SUN Jingxiang,et al. Improvement of sewage sludge dewatering by piezoelectric effect driven directly with pressure from pressure filtration:Towards understanding piezo-dewatering mechanism[J]. Water Research, 2022, 209:117922. doi: 10.1016/j.watres.2021.117922
|
3 |
WU Boran, DAI Xiaohu, CHAI Xiaoli. Critical review on dewatering of sewage sludge:Influential mechanism,conditioning technologies and implications to sludge re-utilizations[J]. Water Research, 2020, 180:115912. doi: 10.1016/j.watres.2020.115912
|
4 |
LIN Wei, LIU Xiao, DING An,et al. Advanced oxidation processes(AOPs)-based sludge conditioning for enhanced sludge dewatering and micropollutants removal:A critical review[J]. Journal of Water Process Engineering, 2022, 45:102468. doi: 10.1016/j.jwpe.2021.102468
|
5 |
MOWLA D, TRAN H N, ALLEN D G. A review of the properties of biosludge and its relevance to enhanced dewatering processes[J]. Biomass and Bioenergy, 2013, 58:365-378. doi: 10.1016/j.biombioe.2013.09.002
|
6 |
HE Xuejie, HE Lei, LIN Ziyuan,et al. Deep dewatering of activated sludge using composite conditioners of surfactant,acid and flocculant:The mechanism and dosage model[J]. Science of the Total Environment, 2022, 806:150899. doi: 10.1016/j.scitotenv.2021.150899
|
7 |
|
|
CHEN Dandan, DOU Yuhao, LU Ping,et al. A review on sludge deep dewatering technology[J]. Chemical Industry and Engineering Progress, 2019, 38(10):4722-4746. doi: 10.16085/j.issn.1000-6613.2019-0056
|
8 |
GUO Kangying, GAO Baoyu, YUE Qinyan. Research status and prospect of the comprehensive utilization of paper mill sludge[J]. Journal of Civil and Environmental Engineering,2021,43(4):118-131.
|
9 |
WANG Houfeng, HU Hao, WANG Huajie,et al. Impact of dosing order of the coagulant and flocculant on sludge dewatering performance during the conditioning process[J]. Science of the Total Environment, 2018, 643:1065-1073. doi: 10.1016/j.scitotenv.2018.06.161
|
10 |
|
|
YANG Wenfeng, ZHANG Qingfang, YANG Qiyong,et al. A review on municipal sludge dewatering and bioleaching conditioning technologies[J]. Industrial Water Treatment, 2018, 38(4):11-16. doi: 10.11894/1005-829x.2018.38(4).011
|
11 |
MOLAEI N, CHEHREH CHELGANI S, BOBICKI E R. A comparison study between bioflocculants and PAM for dewatering of ultrafine phyllosilicate clay minerals[J]. Applied Clay Science, 2022, 218:106409. doi: 10.1016/j.clay.2022.106409
|
12 |
GUO Bo, YU Huan, GAO Baoyu,et al. Novel cationic polyamidine:Synthesis,characterization,and sludge dewatering performance[J]. Journal of Environmental Sciences, 2017, 51:305-314. doi: 10.1016/j.jes.2016.08.002
|
13 |
CHOPRA H, RUHI G. Eco friendly chitosan:An efficient material for water purification[J]. The Pharma Innovation Journal,2016,5:92-95.
|
14 |
郑怀礼,李林涛,蒋绍阶,等. CPAM调质浓缩污泥脱水的影响因素及其机理研究[J]. 环境工程学报,2009,3(6):1099-1102.
|
|
ZHENG Huaili, LI Lintao, JIANG Shaojie,et al. Study on influencing factors and function mechanism of CPAM for regulation of concentrated sludge[J]. Chinese Journal of Environmental Engineering,2009,3(6):1099-1102.
|
15 |
WALTON J R. Aluminum involvement in the progression of Alzheimer’s disease[J]. Journal of Alzheimer’s Disease:JAD, 2013, 35(1):7-43. doi: 10.3233/jad-121909
|
16 |
WANG Danfeng, ZHAO Tianqi, YAN Liuqing,et al. Synthesis,characterization and evaluation of dewatering properties of chitosan-grafting DMDAAC flocculants[J]. International Journal of Biological Macromolecules, 2016, 92:761-768. doi: 10.1016/j.ijbiomac.2016.07.087
|
17 |
WU Hu, LIU Zhouzhou, YANG Hu,et al. Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water[J]. Water Research, 2016, 96:126-135. doi: 10.1016/j.watres.2016.03.055
|
18 |
YANG Qi, LUO Kun, LIAO Dexiang,et al. A novel bioflocculant produced by Klebsiella sp. and its application to sludge dewatering[J]. Water and Environment Journal, 2012, 26(4):560-566. doi: 10.1111/j.1747-6593.2012.00319.x
|
19 |
WONG J W C, MURUGESAN K, YU S M,et al. Improved dewatering of CEPT sludge by biogenic flocculant from acidithiobacillus ferrooxidans[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2016, 73(4):843-848. doi: 10.2166/wst.2015.557
|
20 |
|
|
MAO Yanli, ZHANG Yanfeng, LUO Shitian,et al. Advances in FLocculation mechanisms and research of water-treatment flocculants[J]. Journal of Huazhong University of Science and Technology(Urban Science Edition), 2008, 25(2):78-82. doi: 10.3969/j.issn.2095-0985.2008.02.019
|
21 |
STERN O. Zur theorie der elektrolytischen doppelschicht[J]. Zeitschrift Für Elektrochemie Und Angewandte Physikalische Chemie, 1924, 30(21/22):508-516. doi: 10.1002/bbpc.192400182
|
22 |
GOUY M. Sur la constitution de la charge électrique à la surface d'un électrolyte[J]. Journal De Physique Théorique et Appliquée, 1910, 9(1):457-468. doi: 10.1051/jphystap:019100090045700
|
23 |
PAULING L. The modern theory of valency[J]. Journal of the Chemical Society(Resumed), 1948(0):1461-1467. doi: 10.1039/jr9480001461
|
24 |
|
25 |
PACKHAM R F. Some studies of the coagulation of dispersed clays with hydrolyzing salts[J]. Journal of Colloid Science, 1965, 20(1):81-92. doi: 10.1016/0095-8522(65)90094-2
|
26 |
|
|
HU Yuansheng, LIU Bin, HAO Xiaodi,et al. Current status and outlook of microalgae flocculation in wastewater treatment[J]. Acta Scientiae Circumstantiae, 2015, 35(1):12-29. doi: 10.13671/j.hjkxxb.2014.0823
|
27 |
GUO Junyuan, WEN Xiaoying. Performances and mechanisms of sludge dewatering by a biopolymer from piggery wastewater and application of the dewatered sludge in remediation of Cr(Ⅵ)-contaminated soil[J]. Journal of Environmental Management, 2020, 259:109678. doi: 10.1016/j.jenvman.2019.109678
|
28 |
LI Lixin, PENG Cheng, DENG Lihua,et al. Understanding the synergistic mechanism of PAM-FeCl 3 for improved sludge dewaterability[J]. Journal of Environmental Management, 2022, 301:113926. doi: 10.1016/j.jenvman.2021.113926
|
29 |
WANG Caixia, ZHANG Weijun, WANG Dongsheng,et al. Influencing mechanism of titanium salt coagulant chemical conditioning on the physical and chemical properties of activated sludge flocs[J]. Environmental Science,2016,37(6):2243-2251.
|
30 |
LI Liqing, SONG Zhenzhen, ZHANG Weijun,et al. Performance and mechanisms of dredged sludge dewaterability enhancement with slag-based polymeric titanium aluminum coagulant[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 630:127514. doi: 10.1016/j.colsurfa.2021.127514
|
31 |
LIN Wei, CHEN Renglu, LIU Xiao,et al. Deep mechanism of enhanced dewaterability of residual sludge by Na +:Comprehensive analyses of intermolecular forces,hydrophilicity and water-holding capacity of EPS[J]. Chemical Engineering Journal, 2022, 450:138505. doi: 10.1016/j.cej.2022.138505
|
32 |
HU Mengzhu, ZHANG Haifeng, LIANG Yi,et al. Influence of NaCl on sludge dewaterability and the hierarchical structure of extracellular polymeric substances[J]. Industrial Water Treatment,2018,38(12):64-68.
|
33 |
CHI Yaoling, GUO Lifang, XU Yi,et al. Rapid removal of bound water from dredged sediments using novel hybrid coagulants[J]. Separation and Purification Technology, 2018, 205:169-175. doi: 10.1016/j.seppur.2018.05.047
|
34 |
牛美青,张伟军,王东升,等. 不同混凝剂对污泥脱水性能的影响研究[J]. 环境科学学报,2012,32(9):2126-2133.
|
|
NIU Meiqing, ZHANG Weijun, WANG Dongsheng,et al. Study on effect of chemical conditioning using different coagulants on sludge dewatering performance[J]. Acta Scientiae Circumstantiae,2012,32(9):2126-2133.
|
35 |
DU Youjing, CAO Bingding, ZHANG Weijun,et al. Improvement of wastewater sludge dewatering properties using polymeric aluminum-silicon complex flocculants conditioning:Importance of aluminum/silicon ratio[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2017, 530:134-145. doi: 10.1016/j.colsurfa.2017.07.042
|
36 |
杨凡,李运宝,张佳宝,等. 无机调理药剂复配对市政污泥脱水性能的影响[J]. 水处理技术,2020,46(11):94-98.
|
|
YANG Fan, LI Yunbao, ZHANG Jiabao,et al. Effect of mixed inorganic conditioning agents on municipal sludge dewaterability[J]. Technology of Water Treatment,2020,46(11):94-98.
|
37 |
LIANG Jialin, ZHANG Siwei, HUANG Jinjia,et al. Comprehensive insights into the inorganic coagulants on sludge dewatering:Comparing aluminium and iron salts[J]. Journal of Chemical Technology & Biotechnology, 2019, 94(5):1534-1550. doi: 10.1002/jctb.5913
|
38 |
郭绍东,李晨曦,黄兴虎,等. 次氯酸钠与亚铁对污泥破解及脱水效果的影响[J]. 环境科学学报,2021,41(8):3130-3137.
|
|
GUO Shaodong, LI Chenxi, HUANG Xinghu,et al. Effects of sodium hypochlorite and ferrous iron on sludge disintegration and dewatering[J]. Acta Scientiae Circumstantiae,2021,41(8):3130-3137.
|
39 |
毕薇薇,阮书瑜,陈吴傲啸,等. 二价铁活化过氧化钙提高剩余活性污泥的脱水性能[J]. 环境科学,2020,41(12):5544-5551.
|
|
BI Weiwei, RUAN Shuyu, CHEN Wuaoxiao,et al. Enhanced dewaterability of waste-activated sludge in presence of Fe(Ⅱ)-activated calcium peroxide[J]. Environmental Science,2020,41(12):5544-5551.
|
40 |
王彩霞,张伟军,王东升,等. 钛盐混凝剂调理对活性污泥絮体理化性质的影响作用机制[J]. 环境科学,2016,37(6):2243-2251.
|
41 |
王晓萌,王鑫,杨明辉,等. 铝、铁、钛3种金属盐基混凝剂调理污泥的性能比较[J]. 环境科学,2018,39(5):2274-2282.
|
|
WANG Xiaomeng, WANG Xin, YANG Minghui,et al. Sludge conditioning performance of polyaluminum,polyferric,and titanium xerogel coagulants[J]. Environmental Science,2018,39(5):2274-2282.
|
42 |
ZHANG Jingzhen, YUE Qinyan, XIA Chao,et al. The study of Na 2SiO 3 as conditioner used to deep dewater the urban sewage dewatered sludge by filter press[J]. Separation and Purification Technology, 2017, 174:331-337. doi: 10.1016/j.seppur.2016.11.004
|
43 |
王森,来凡,肖雪莉,等. TXC/CMC复合絮凝剂对污泥CST的影响研究[J]. 功能材料,2020,51(3):3007-3012.
|
|
WANG Sen, LAI Fan, XIAO Xueli,et al. Effect of TXC/CMC composite flocculant on sludge CST[J]. Journal of Functional Materials,2020,51(3):3007-3012.
|
44 |
ZHAO Yuxia, GAO Baoyu, SHON H K,et al. Coagulation characteristics of titanium(Ti) salt coagulant compared with aluminum(Al) and iron(Fe) salts[J]. Journal of Hazardous Materials, 2011, 185(2/3):1536-1542. doi: 10.1016/j.jhazmat.2010.10.084
|
45 |
|
|
LIU Libing, WANG Xi, YANG Chenggang,et al. The analysis of dominant species in aluminous coagulants and their coagulation properties[J]. Acta Scientiae Circumstantiae, 2020, 40(12):4249-4262. doi: 10.13671/j.hjkxxb.2020.0526
|
46 |
MATSUI Y, MATSUSHITA T, SAKUMA S,et al. Virus inactivation in aluminum and polyaluminum coagulation[J]. Environmental Science & Technology, 2003, 37(22):5175-5180. doi: 10.1021/es0343003
|
47 |
YANG Peng, LI Dandan, ZHANG Weijun,et al. Flocculation-dewatering behavior of waste activated sludge particles under chemical conditioning with inorganic polymer flocculant:Effects of typical sludge properties[J]. Chemosphere, 2019, 218:930-940. doi: 10.1016/j.chemosphere.2018.11.169
|
48 |
LI Chengyao, SONG Zhenzhen, ZHANG Weijun,et al. Impact of hydroxyl aluminum speciation on dewaterability and pollutants release of dredged sludge using polymeric aluminum chloride[J]. Journal of Water Process Engineering, 2022, 49:103051. doi: 10.1016/j.jwpe.2022.103051
|
49 |
PENG Huanlong, ZHONG Songxiong, XIANG Jiangxin,et al. Characterization and secondary sludge dewatering performance of a novel combined aluminum-ferrous-starch flocculant(CAFS)[J]. Chemical Engineering Science, 2017, 173:335-345. doi: 10.1016/j.ces.2017.08.005
|
50 |
WANG Xiaomeng, LI Minghui, SONG Xiaojie,et al. Preparation and evaluation of titanium-based xerogel as a promising coagulant for water/wastewater treatment[J]. Environmental Science & Technology, 2016, 50(17):9619-9626. doi: 10.1021/acs.est.6b03321
|
51 |
ZHAO Yanxia, CHI Yuantong, TIAN Chang,et al. Recycling of titanium-coagulated algae-rich sludge for enhanced photocatalytic oxidation of phenolic contaminants through oxygen vacancy[J]. Water Research, 2020, 177:115789. doi: 10.1016/j.watres.2020.115789
|
52 |
ZHAO Y X, PHUNTSHO S, GAO B Y,et al. Preparation and characterization of novel polytitanium tetrachloride coagulant for water purification[J]. Environmental Science & Technology, 2013, 47(22):12966-12975. doi: 10.1021/es402708v
|
53 |
SHON H K, VIGNESWARAN S, KANDASAMY J,et al. Preparation of titanium oxide,iron oxide,and aluminium oxide from sludge generated from Ti-salt,Fe-salt and Al-salt flocculation of wastewater[J]. Journal of Industrial and Engineering Chemistry, 2009, 15(5):719-723. doi: 10.1016/j.jiec.2009.09.052
|
54 |
ZHAO Yuxia, PHUNTSHO S, GAO Baoyu,et al. Comparison of a novel polytitanium chloride coagulant with polyaluminium chloride:Coagulation performance and floc characteristics[J]. Journal of Environmental Management, 2015, 147:194-202. doi: 10.1016/j.jenvman.2014.09.023
|
55 |
GAN Yonghai, LI Jingbiao, ZHANG Li,et al. Potential of titanium coagulants for water and wastewater treatment:Current status and future perspectives[J]. Chemical Engineering Journal, 2021, 406:126837. doi: 10.1016/j.cej.2020.126837
|
56 |
WANG Xiaomeng, GAN Yonghai, ZHANG Shujuan. Improved resistance to organic matter load by compositing a cationic flocculant into the titanium xerogel coagulant[J]. Separation and Purification Technology, 2019, 211:715-722. doi: 10.1016/j.seppur.2018.10.038
|
57 |
ZHAO Yanxia, PHUNTSHO S, GAO Baoyu,et al. Polytitanium sulfate(PTS):Coagulation application and Ti species detection[J]. Journal of Environmental Sciences, 2017, 52:250-258. doi: 10.1016/j.jes.2016.04.008
|
58 |
CHEN Wei, ZHENG Huaili, GUO Jinsong,et al. Preparation and characterization of a composite coagulant:Polyferric titanium sulfate[J]. Water,Air,& Soil Pollution, 2016, 227(3):79. doi: 10.1007/s11270-016-2766-6
|
59 |
张鹏,赵冬琴,王雨露. 聚合氯化铝镁钛的制备及结构表征[J]. 环境科学研究,2018,31(12):2155-2162.
|
|
ZHANG Peng, ZHAO Dongqin, WANG Yulu. Preparation and structural characterization of poly aluminum magnesium titanium chloride[J]. Research of Environmental Sciences,2018,31(12):2155-2162.
|
60 |
ZHANG Peng, LIAO Lina, ZHU Guocheng. Performance of PATC-PDMDAAC composite coagulants in low-temperature and low-turbidity water treatment[J]. Materials(Basel,Switzerland), 2019, 12(17):2824. doi: 10.3390/ma12172824
|
61 |
ZHANG Weijun, CHEN Zhan, CAO Bingdi,et al. Improvement of wastewater sludge dewatering performance using titanium salt coagulants(TSCs) in combination with magnetic nano-particles:Significance of titanium speciation[J]. Water Research, 2017, 110:102-111. doi: 10.1016/j.watres.2016.12.011
|
62 |
WANG Xiaomeng, GAN Yonghai, GUO Shang,et al. Advantages of titanium xerogel over titanium tetrachloride and polytitanium tetrachloride in coagulation:A mechanism analysis[J]. Water Research, 2018, 132:350-360. doi: 10.1016/j.watres.2017.12.081
|
63 |
JEAN D S, LEE D J. Effects of salinity on expression dewatering of waste activated sludge[J]. Journal of Colloid and Interface Science, 1999, 215(2):443-445. doi: 10.1006/jcis.1999.6272
|
64 |
PANG Heliang, XU Jie, HE Junguo,et al. Enhanced anaerobic fermentation of waste activated sludge by NaCl assistant hydrolysis strategy:Improved bio-production of short-chain fatty acids and feasibility of NaCl reuse[J]. Bioresource Technology, 2020, 312:123303. doi: 10.1016/j.biortech.2020.123303
|
65 |
|
66 |
XIAO Jun, WU Xu, YU Wenbo,et al. Migration and distribution of sodium ions and organic matters during electro-dewatering of waste activated sludge at different dosages of sodium sulfate[J]. Chemosphere, 2017, 189:67-75. doi: 10.1016/j.chemosphere.2017.09.034
|
67 |
PANG Heliang, WANG Ling, HE Junguo,et al. Enhanced anaerobic fermentation of waste activated sludge by reverse osmosis brine and composition distribution in fermentative liquid[J]. Bioresource Technology, 2020, 318:123953. doi: 10.1016/j.biortech.2020.123953
|
68 |
OMAR B A, ELMASRY R, EITA A,et al. Upgrading the preparation of high-quality chitosan from Procambarus clarkii wastes over the traditional isolation of shrimp chitosan[J]. Saudi Journal of Biological Sciences, 2022, 29(2):911-919. doi: 10.1016/j.sjbs.2021.10.014
|
69 |
ARGÜELLES-MONAL W M, LIZARDI-MENDOZA J, FERNÁNDEZ-QUIROZ D,et al. Chitosan derivatives:Introducing new functionalities with a controlled molecular architecture for innovative materials[J]. Polymers, 2018, 10(3):342. doi: 10.3390/polym10030342
|
70 |
MA Jiangya, FU Kun, SHI Jun,et al. Ultraviolet-assisted synthesis of polyacrylamide-grafted chitosan nanoparticles and flocculation performance[J]. Carbohydrate Polymers, 2016, 151:565-575. doi: 10.1016/j.carbpol.2016.06.002
|
71 |
LAU S W, TANG S D, ANG H M,et al. Dual-conditioning of sludge using chitosan and metal cations[J]. Water Practice and Technology, 2015, 10(2):381-389. doi: 10.2166/wpt.2015.047
|
72 |
WEI Hua, REN Jie, LI Aimin,et al. Sludge dewaterability of a starch-based flocculant and its combined usage with ferric chloride[J]. Chemical Engineering Journal, 2018, 349:737-747. doi: 10.1016/j.cej.2018.05.151
|
73 |
LIU Yongzhi, ZHENG Huaili, SUN Yongjun,et al. Synthesis of novel chitosan-based flocculants with amphiphilic structure and its applica-ion in sludge dewatering:Role of hydrophobic groups[J]. Journal of Cleaner Production, 2020, 249:119350. doi: 10.1016/j.jclepro.2019.119350
|
74 |
谢武明,马峡珍,李俊,等. 酸浸赤泥制备含碳聚硅酸铝铁絮凝剂及其污泥脱水性能研究[J]. 环境科学学报,2017,37(9):3464-3470.
|
|
XIE Wuming, MA Xiazhen, LI Jun,et al. The preparison and sludge-dewatering properties of R-CSiAFS composite flocculant made from acid-treated red mud[J]. Acta Scientiae Circumstantiae,2017,37(9):3464-3470.
|
75 |
LU Yi, ZHENG Guanyu, WU Wenzhu,et al. Significances of deflocculated sludge flocs as well as extracellular polymeric substances in influencing the compression dewatering of chemically acidified sludge[J]. Separation and Purification Technology, 2017, 176:243-251. doi: 10.1016/j.seppur.2016.12.016
|
76 |
李明霜,朱利军,徐慧,等. 阴离子聚丙烯酰胺(APAM)和聚二甲基二烯丙基氯化铵(HCA)对给水厂污泥水分分布的影响及其与污泥颗粒的作用机制[J]. 环境科学学报, 2021, 41(8):3121-3129. doi: 10.13671/j.hjkxxb.2021.0033
|
|
LI Mingshuang, ZHU Lijun, XU Hui,et al. The performance and mechanism of sludge dewatering with APAM and HCA in drinking water plant[J]. Acta Scientiae Circumstantiae, 2021, 41(8):3121-3129. doi: 10.13671/j.hjkxxb.2021.0033
|
77 |
ZHU Cheng, LI Fan, ZHANG Panyue,et al. Combined sludge conditioning with NaCl-cationic polyacrylamide-rice husk powders to improve sludge dewaterability[J]. Powder Technology, 2018, 336:191-198. doi: 10.1016/j.powtec.2018.05.042
|
78 |
刘一止,周先桃,杨彤. 生物壳粉与CPAM联用改善污泥脱水性能的研究[J]. 工业水处理,2022,42(12):154-159.
|
|
LIU Yizhi, ZHOU Xiantao, YANG Tong. Study on improving sludge dewatering performance by combining biological shell powder with CPAM[J]. Industrial Water Treatment,2022,42(12):154-159.
|
79 |
ZHANG Jin, HU Qing, LU Jie,et al. Study on the effect of chitosan conditioning on sludge dewatering[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2019, 79(3):501-509. doi: 10.2166/wst.2019.073
|
80 |
LIU Yongzhi, ZHENG Huaili, AN Yanyan,et al. Ultrasound-assisted synthesis of the β-cyclodextrin based cationic polymeric flocculants and evaluation of flocculation performance:Role of β-cyclodextrin[J]. Separation and Purification Technology, 2019, 228:115735. doi: 10.1016/j.seppur.2019.115735
|
81 |
WANG Houfeng, WANG Huajie, HU Hao,et al. Applying rheological analysis to understand the mechanism of polyacrylamide(PAM) conditioning for sewage sludge dewatering[J]. RSC Advances, 2017, 7(48):30274-30282. doi: 10.1039/c7ra05202b
|
82 |
FENG Xin, WAN Junjie, DENG Jinchuan,et al. Study on the regulation of sludge dewatering by hydrophobically associating cationic polyacrylamide coupled with framework materials[J]. Journal of Water Process Engineering, 2022, 45:102502. doi: 10.1016/j.jwpe.2021.102502
|
83 |
常青. 论疏水絮凝与疏水作用力[J]. 环境科学学报,2018,38(10):3787-3796.
|
|
CHANG Qing. Discussion on hydrophobic flocculation and hydrophobic force[J]. Acta Scientiae Circumstantiae,2018,38(10):3787-3796.
|
84 |
HERNÁNDEZ-BARAJAS J, HUNKELER D J. Inverse-emulsion copolymerization of acrylamide and quaternary ammonium cationic monomers with block copolymeric surfactants:Copolymer composition control using batch and semi-batch techniques[J]. Polymer, 1997, 38(2):449-458. doi: 10.1016/s0032-3861(96)00511-3
|
85 |
任杰,赵若岚,郑怀礼,等. 表面光催化引发合成阳离子聚丙烯酰胺及其表征[J]. 水处理技术,2021,47(1):27-31.
|
|
REN Jie, ZHAO Ruolan, ZHENG Huaili,et al. The synthesis and characterization of cationic polyacrylamide by photocatalytic surface-initiated method[J]. Technology of Water Treatment,2021,47(1):27-31.
|
86 |
CAO Bingdi, ZHANG Tao, ZHANG Weijun,et al. Enhanced technology based for sewage sludge deep dewatering:A critical review[J]. Water Research, 2021, 189:116650. doi: 10.1016/j.watres.2020.116650
|
87 |
蔡灵敏,罗西子,周珉,等. CPAM及与FeCl3联用改善污泥脱水性能的研究[J]. 工业水处理,2019,39(6):81-85.
|
|
CAI Lingmin, LUO Xizi, ZHOU Min,et al. Research on CPAM and CPAM coupled with FeCl3 for the improvement of sludge dewatering capability[J]. Industrial Water Treatment,2019,39(6):81-85.
|
88 |
HU Pan, ZHUANG Shuhan, SHEN Shaohang,et al. Dewaterability of sewage sludge conditioned with a graft cationic starch-based flocculant:Role of structural characteristics of flocculant[J]. Water Research, 2021, 189:116578. doi: 10.1016/j.watres.2020.116578
|
89 |
冯齐云,高宝玉,岳钦艳,等. 不同阳离子聚丙烯酰胺有机脱水剂对污泥脱水性能的影响[J]. 环境科学,2022,43(2):928-935.
|
|
FENG Qiyun, GAO Baoyu, YUE Qinyan,et al. Effect of different cationic polyacrylamide organic dehydrating agents on sludge dewatering performance[J]. Environmental Science,2022,43(2):928-935.
|
90 |
CHEN Wei, ZHENG Huaili, GUAN Qingqing,et al. Fabricating a flocculant with controllable cationic microblock structure:Characterization and sludge conditioning behavior evaluation[J]. Industrial & Engineering Chemistry Research, 2016, 55(10):2892-2902. doi: 10.1021/acs.iecr.5b04207
|
91 |
CHEN Yuning, LI Xuhao, WANG Zizeng,et al. Research on a new cationic polyacrylamide(CPAM) with a cationic microblock structure and its enhanced effect on sludge condition and dewatering[J]. Environmental Science and Pollution Research, 2021, 28(37):51865-51878. doi: 10.1007/s11356-021-14325-3
|
92 |
TSILO P H, BASSON A K, NTOMBELA Z G,et al. Production and characterization of a bioflocculant from Pichia kudriavzevii MH545928. 1 and its application in wastewater treatment[J]. International Journal of Environmental Research and Public Health, 2022, 19(6):3148. doi: 10.3390/ijerph19063148
|
93 |
MAO Shaohui, XU Xiaohui, ZHANG Linjiang,et al. Methylated mud snail protein as a bio-flocculant for high turbidity wastewater treatment[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research, 2021, 84(3):737-751. doi: 10.2166/wst.2021.262
|
94 |
BHARTI S, Synthesis MISHRA S.,characterization and application of polymethyl methacrylate grafted oatmeal :A potential flocculant for wastewater treatment[J]. International Journal of Environmental Research,2016,10:169-178.
|
95 |
LIU Cong, SUN Di, LIU Jiawen,et al. Recent advances and perspectives in efforts to reduce the production and application cost of microbial flocculants[J]. Bioresources and Bioprocessing, 2021, 8(1):1-20. doi: 10.1186/s40643-021-00405-2
|
96 |
MOHAMED H N S, LAU S W, TAKEO M,et al. Novel cationic chitosan-like bioflocculant from Citrobacter youngae GTC 01314 for the treatment of Kaolin suspension and activated sludge[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105297. doi: 10.1016/j.jece.2021.105297
|
97 |
史佳晟,杨硕,余雷,等. 丝状真菌Talaromyces flavus S1在污泥中的成球特性及改善脱水性能的研究[J]. 环境科学学报,2017,37(10):3672-3678.
|
|
SHI Jiasheng, YANG Shuo, YU Lei,et al. The pelletization characteristics of the filamentous fungi Talaromyces flavus S1 in sludge and the improvement for sludge dewatering[J]. Acta Scientiae Circumstantiae,2017,37(10):3672-3678.
|
98 |
GUO Junyuan, JIANG Shilin, LIU Jianying,et al. Production of a biopolymer by using hydrolyzate of rice stover and its application in sludge dewatering[J]. Waste and Biomass Valorization, 2020, 11(5):2163-2169. doi: 10.1007/s12649-018-00548-y
|
99 |
KURADE M B, MURUGESAN K, SELVAM A,et al. Sludge conditioning using biogenic flocculant produced by Acidithiobacillus ferrooxidans for enhancement in dewaterability[J]. Bioresource Technology, 2016, 217:179-185. doi: 10.1016/j.biortech.2016.02.113
|
100 |
|
|
WU Peng, ZHANG Rui, FAN Xinzhu,et al. Optimization of the extraction method of the bioflocculant and its application in lignocellulosic waste-containing water[J]. Chinese Journal of Environmental Engineering, 2022, 16(1):343-354. doi: 10.12030/j.cjee.202103172
|
101 |
CHEN Renjie, DAI Xiaohu, DONG Bin. Decrease the effective temperature of hydrothermal treatment for sewage sludge deep dewatering:Mechanistic of tannic acid aided[J]. Water Research, 2022, 217:118450. doi: 10.1016/j.watres.2022.118450
|
102 |
CAI Meiqiang, QIAN Zhuohui, XIONG X,et al. Cationic polyacrylamide(CPAM) enhanced pressurized vertical electro-osmotic dewatering of activated sludge[J]. Science of the Total Environment, 2022, 818:151787. doi: 10.1016/j.scitotenv.2021.151787
|
103 |
TIAN Ganpei, LI Lei, LIU Bo,et al. Enhancing the dewaterability of the municipal sludge by flocculant combined with skeleton builder[J]. Environmental Technology & Innovation, 2022, 25:102166. doi: 10.1016/j.eti.2021.102166
|
104 |
CHEN Zhan, ZHANG Weijun, WANG Dongsheng,et al. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants:Kinetics of enzymatic reaction and re-flocculation morphology[J]. Water Research, 2015, 83:367-376. doi: 10.1016/j.watres.2015.06.026
|
105 |
HAN Yi, ZHOU Min, WAN Sha,et al. Optimization of sludge dewatering process by inorganic conditioners under mild thermal treatment[J]. Desalination and Water Treatment, 2016, 57(59):28661-28669. doi: 10.1080/19443994.2016.1193771
|
106 |
陆香玉,俞海祥,陈亚,等. 化学絮凝与电絮凝调理污泥脱水性能影响作用的对比研究[J]. 环境科学学报,2022,42(3):257-267.
|
|
LU Xiangyu, YU Haixiang, CHEN Ya,et al. Comparison of the effects of chemical flocculation and electric flocculation conditioning on sludge dewatering performance[J]. Acta Scientiae Circumstantiae,2022,42(3):257-267.
|
107 |
YANG Yahong, YANG Xingfeng, YANG Qiyong,et al. Exploring the feasibility and potential mechanism of synergistic enhancement of sludge dewaterability by ultrasonic cracking,chitosan re-flocculation and sludge-based biochar adsorption of water-holding substances[J]. Journal of Environmental Chemical Engineering, 2022, 10(5):108303. doi: 10.1016/j.jece.2022.108303
|
108 |
BARATI RASHVANLOU R, PASALARI H, MOSERZADEH A ALI,et al. A combined ultrasonic and chemical conditioning process for upgrading the sludge dewaterability[J]. International Journal of Environmental Analytical Chemistry, 2022, 102(7):1613-1626. doi: 10.1080/03067319.2020.1739668
|
109 |
莫汝松,戴文灿,孙水裕,等. 氧化剂对氯化铁与石灰联合调理污泥脱水性能的影响[J]. 环境科学与技术,2015,38(9):147-151.
|
|
MO Rusong, DAI Wencan, SUN Shuiyu,et al. Dewatering performance of sludge modified by oxidants combined with ferric chloride and lime[J]. Environmental Science & Technology,2015,38(9):147-151.
|
110 |
刘力荣,罗衍强,彭丽思,等. 城市污泥深度脱水调理药剂的筛选与优化研究[J]. 环境工程,2014,32(S1):65-69.
|
|
LIU Lirong, LUO Yanqiang, PENG Lisi,et al. Study on screening and optimization of municipal sludge deep dewatering conditioners[J]. Environmental Engineering,2014,32(S1):65-69.
|
111 |
XIA Jiahua, RAO Ting, JI Juan,et al. Enhanced dewatering of activated sludge by skeleton-assisted flocculation process[J]. International Journal of Environmental Research and Public Health, 2022, 19(11):6540. doi: 10.3390/ijerph19116540
|
112 |
WU Yan, ZHANG Panyue, ZHANG Haibo,et al. Possibility of sludge conditioning and dewatering with rice husk biochar modified by ferric chloride[J]. Bioresource Technology, 2016, 205:258-263. doi: 10.1016/j.biortech.2016.01.020
|
113 |
CHEN Zhan, ZHANG Weijun, WANG Dongsheng,et al. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation[J]. Water Research, 2016, 103:170-181. doi: 10.1016/j.watres.2016.07.018
|
114 |
申亮,施周,罗璐,等. 壳聚糖和溶菌酶联用对污泥脱水性能的影响[J]. 中国给水排水,2016,32(5):107-111.
|
|
SHEN Liang, SHI Zhou, LUO Lu,et al. Effect of chitosan and lysozyme treatment on dewaterability of sludge[J]. China Water & Wastewater,2016,32(5):107-111.
|
115 |
罗璐,施周,周先敏,等. 絮凝剂和溶菌酶联用促进污泥脱水性能[J]. 湖南大学学报:自然科学版,2018,45(12):131-137.
|
|
LUO Lu, SHI Zhou, ZHOU Xianmin,et al. Effect of flocculant and lysozyme treatment on sludge dewaterability[J]. Journal of Hunan University(Natural Sciences),2018,45(12):131-137.
|
116 |
LIN Feng, ZHU Xiaolin, LI Jigeng,et al. Effect of extracellular polymeric substances(EPS) conditioned by combined lysozyme and cationic polyacrylamide on the dewatering performance of activated sludge[J]. Chemosphere, 2019, 235:679-689. doi: 10.1016/j.chemosphere.2019.06.220
|
117 |
陈彦秀,李刚. 市政污泥脱水技术研究进展[J]. 环境科学与技术,2021,44(S1):308-311.
|
|
CHEN Yanxiu, LI Gang. Research progress of municipal sludge dewatering technology[J]. Environmental Science & Technology,2021,44(S1):308-311.
|
118 |
HASSANPOUR M, CAI Guiqin, COOPER T,et al. Triple action of FeCl 3-assisted hydrothermal treatment of digested sludge for deep dewatering[J]. The Science of the Total Environment, 2022, 848:157727. doi: 10.1016/j.scitotenv.2022.157727
|
119 |
ALJABERI F Y, ALARDHI S M, AHMED S A,et al. Can electrocoagulation technology be integrated with wastewater treatment systems to improve treatment efficiency?[J]. Environmental Research, 2022, 214:113890. doi: 10.1016/j.envres.2022.113890
|
120 |
ZHU Cheng, ZHANG Panyue, WANG Hongjie,et al. Conditioning of sewage sludge via combined ultrasonication-flocculation-skeleton building to improve sludge dewaterability[J]. Ultrasonics Sonochemistry, 2018, 40:353-360. doi: 10.1016/j.ultsonch.2017.07.028
|
121 |
PILLI S, BHUNIA P, YAN Song,et al. Ultrasonic pretreatment of sludge:A review[J]. Ultrasonics Sonochemistry, 2011, 18(1):1-18. doi: 10.1016/j.ultsonch.2010.02.014
|
122 |
|
|
DONG Lingxiao, DING Shaolan, XIE Linhua,et al. Walnut shell used as skeleton builder for improving sludge dewatering properties[J]. Chinese Journal of Environmental Engineering, 2016, 10(1):365-369. doi: 10.12030/j.cjee.20160160
|
123 |
CUI Yan, ZHU Wei, WU Silin,et al. The role of lime in dredged mud dewatered by a plate and frame filter press and potential substitutes[J]. Environmental Science and Pollution Research, 2021, 28(14):17331-17342. doi: 10.1007/s11356-020-12207-8
|
124 |
CHEN Kai, SUN Yue, FAN Jun,et al. The dewatering performance and cracking-flocculation-skeleton mechanism of bioleaching-coal fly ash combined process for sewage sludge[J]. Chemosphere, 2022, 307:135994. doi: 10.1016/j.chemosphere.2022.135994
|
125 |
JONATHAN Z, NOAH G, MENAHEM R. Skeleton builders for conditioning oily sludge[J]. Journal(Water Pollution Control Federation),1987,59(7):699-706.
|
126 |
YU Li, YU Yang, JIANG Wentian,et al. Integrated treatment of municipal sewage sludge by deep dewatering and anaerobic fermentation for biohydrogenproduction[J]. Environmental Science and Pollution Research, 2015, 22(4):2599-2609. doi: 10.1007/s11356-014-3514-3
|
127 |
|
|
FENG Kai, HUANG Ou. Application of lime conditioning and lime drying process in sludge dewatering[J]. Water & Wastewater Engineering, 2011, 47(5):7-10. doi: 10.3969/j.issn.1002-8471.2011.05.002
|
128 |
|
|
YANG Bin, YANG Jiakuan, TANG Yi,et al. Impact of fly ash and powered lime on dewatering performance of sludge[J]. Environmental Science & Technology, 2007, 30(4):98-99. doi: 10.3969/j.issn.1003-6504.2007.04.035
|
129 |
杨艳坤,王子文,王燕,等. 基于泥质的污泥脱水策略与数学模型构建研究[J]. 环境科学学报,2019,39(10):3475-3481.
|
|
YANG Yankun, WANG Ziwen, WANG Yan,et al. Construction of dewatering strategies and mathematic model from sludge based on sludge characteristics[J]. Acta Scientiae Circumstantiae,2019,39(10):3475-3481.
|
130 |
YU Wenbo, YANG Jiakuan, SHI Yafei,et al. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton’s reagent and lime[J]. Water Research, 2016, 95:124-133. doi: 10.1016/j.watres.2016.03.016
|
131 |
BONILLA S, TRAN H, ALLEN D G. Enhancing pulp and paper mill biosludge dewaterability using enzymes[J]. Water Research, 2015, 68:692-700. doi: 10.1016/j.watres.2014.10.057
|