1 |
孙浩,李虹,蔡灵锐,等. 乳品废水处理工程设计、调试与运行实例[J]. 工业水处理,2022,42(11):184-188.
|
|
SUN Hao, LI Hong, CAI Lingrui,et al. Design,commissioning and operation of dairy wastewater treatment project[J]. Industrial Water Treatment,2022,42(11):184-188.
|
2 |
刘宇,张国治,袁东振,等. 豆制品废水综合利用现状[J]. 粮食与油脂,2015,28(3):22-25.
|
|
LIU Yu, ZHANG Guozhi, YUAN Dongzhen,et al. Comprehensive utilize situation of soybean products wastewater[J]. Cereals & Oils,2015,28(3):22-25.
|
3 |
KUTLAR F E, TUNCA B, YILMAZEL Y D. Carbon-based conductive materials enhance biomethane recovery from organic wastes:A review of the impacts on anaerobic treatment[J]. Chemosphere, 2022, 290:133247. doi: 10.1016/j.chemosphere.2021.133247
|
4 |
SHARMA D, MAHAJAN R, GOEL G. Insights into direct interspecies electron transfer mechanisms for acceleration of anaerobic digestion of wastes[J]. International Journal of Environmental Science and Technology, 2019, 16(4):2133-2142. doi: 10.1007/s13762-018-2065-4
|
5 |
SHIN S G, HAN G,LIM J,et al. A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater[J]. Water Research, 2010, 44(17):4838-4849. doi: 10.1016/j.watres.2010.07.019
|
6 |
MEI Ran, NARIHIRO T, NOBU M K,et al. Evaluating digestion efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity[J]. Scientific Reports, 2016, 6:34090. doi: 10.1038/srep34090
|
7 |
LIN Richen, DENG Chen, CHENG Jun,et al. Graphene facilitates biomethane production from protein-derived glycine in anaerobic digestion[J]. iScience, 2018, 10:158-170. doi: 10.1016/j.isci.2018.11.030
|
8 |
李静,张宝刚,刘青松,等. 导电材料强化微生物直接种间电子传递产甲烷的研究进展[J]. 微生物学报,2021,61(6):1507-1524.
|
|
LI Jing, ZHANG Baogang, LIU Qingsong,et al. Research progress on enhancement of methane production through direct interspecific electron transfer by conductive materials[J]. Acta Microbiologica Sinica,2021,61(6):1507-1524.
|
9 |
艾乐仙,邓风,胡潇鹏,等. 废铁屑、还原铁粉对剩余污泥厌氧消化效果的研究[J]. 工业水处理,2019,39(8):69-73.
|
|
AI Lexian, DENG Feng, HU Xiaopeng,et al. Study on anaerobic digestion effect of waste iron scrap and reduced iron powder on residual sludge[J]. Industrial Water Treatment,2019,39(8):69-73.
|
10 |
潘伟亮,谭秀晴,欧阳荭霖,等. 生物炭强化厌氧膜生物反应器处理废水性能的研究进展[J]. 工业水处理,2024,44(4):38-45.
|
|
PAN Weiliang, TAN Xiuqing, OUYANG Honglin,et al. Research advances on wastewater treatment performance of anaerobic membrane bioreactor enhanced by biochar[J]. Industrial Water Treatment,2024,44(4):38-45.
|
11 |
王福振,万红友,赵子升,等. 生物炭负载纳米Fe3O4强化活性红2厌氧降解[J]. 工业水处理,2021,41(5):58-61.
|
|
WANG Fuzhen, WAN Hongyou, ZHAO Zisheng,et al. Biochar loaded with nano-Fe3O4 enhances the anaerobic degradation of reactive red 2[J]. Industrial Water Treatment,2021,41(5):58-61.
|
12 |
LIES D P, HERNANDEZ M E, KAPPLER A,et al. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for Biofilms[J]. Applied and Environmental Microbiology, 2005, 71(8):4414-4426. doi: 10.1128/aem.71.8.4414-4426.2005
|
13 |
CRUZ VIGGI C, ROSSETTI S, FAZI S,et al. Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation[J]. Environmental Science & Technology, 2014, 48(13):7536-7543. doi: 10.1021/es5016789
|
14 |
CHENG Qiwen, CALL D F. Hardwiring microbes via direct interspecies electron transfer:Mechanisms and applications[J]. Environmental Science. Processes & Impacts, 2016, 18(8):968-980. doi: 10.1039/c6em00219f
|
15 |
ABDELSALAM E, SAMER M, ATTIA Y A,et al. Influence of zero valent iron nanoparticles and magnetic iron oxide nanoparticles on biogas and methane production from anaerobic digestion of manure[J]. Energy, 2017, 120:842-853. doi: 10.1016/j.energy.2016.11.137
|
16 |
CASALS E, BARRENA R, GARCÍA A,et al. Programmed iron oxide nanoparticles disintegration in anaerobic digesters boosts biogas production[J]. Small, 2014, 10(14):2801-2808. doi: 10.1002/smll.201303703
|
17 |
BIRD L J, BONNEFOY V, NEWMAN D K. Bioenergetic challenges of microbial iron metabolisms[J]. Trends in Microbiology, 2011, 19(7):330-340. doi: 10.1016/j.tim.2011.05.001
|
18 |
国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社,2002,211-213.
|
19 |
TIAN Tian, QIAO Sen, YU Cong,et al. Distinct and diverse anaerobic respiration of methanogenic community in response to MnO 2 nanoparticles in anaerobic digester sludge[J]. Water Research, 2017, 123:206-215. doi: 10.1016/j.watres.2017.06.066
|
20 |
BU Jie, WEI Haolin, WANG Yutao,et al. Biochar boosts dark fermentative H 2 production from sugarcane bagasse by selective enrichment/colonization of functional bacteria and enhancing extracellular electron transfer[J]. Water Research, 2021, 202:117440. doi: 10.1016/j.watres.2021.117440
|
21 |
杨晓琪. 纳米四氧化三铁对污泥厌氧消化的影响[D]. 青岛:青岛科技大学,2020.
|
|
YANG Xiaoqi. Effect of nano-Fe3O4 on anaerobic digestion of sludge[D]. Qingdao:Qingdao University of Science & Technology,2020.
|
22 |
ZHAN Wei, TIAN Yu, ZHANG Jun,et al. Mechanistic insights into the roles of ferric chloride on methane production in anaerobic digestion of waste activated sludge[J]. Journal of Cleaner Production,2021,296:126527.
|
23 |
WANG Mingwei, ZHAO Zhiqiang, ZHANG Yaobin. Sustainable strategy for enhancing anaerobic digestion of waste activated sludge:Driving dissimilatory iron reduction with Fenton sludge[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(2):2220-2230. doi: 10.1021/acssuschemeng.7b03637
|
24 |
LUO Tianyi, XU Qiuxiang, WEI Wei,et al. Performance and mechanism of Fe 3O 4 improving biotransformation of waste activated sludge into liquid high-value products[J]. Environmental Science & Technology, 2022, 56(6):3658-3668. doi: 10.1021/acs.est.1c05960
|
25 |
ZHANG Yaobin, FENG Yinghong, YU Qilin,et al. Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron[J]. Bioresource Technology, 2014, 159:297-304. doi: 10.1016/j.biortech.2014.02.114
|
26 |
ZHEN Guangyin, LU Xueqin, LI Yuyou,et al. Influence of zero valent scrap iron(ZVSI) supply on methane production from waste activated sludge[J]. Chemical Engineering Journal, 2015, 263:461-470. doi: 10.1016/j.cej.2014.11.003
|
27 |
GONG Lei, YANG Xiaoqi, YOU Xiaogang,et al. Explore the effect of Fe 3O 4 nanoparticles(NPs) on anaerobic digestion of sludge[J]. Environmental Technology, 2021, 42(10):1542-1551. doi: 10.1080/09593330.2019.1673829
|
28 |
JADHAV P, KHALID Z BIN, ZULARISAM A W,et al. The role of iron-based nanoparticles(Fe-NPs) on methanogenesis in anaerobic digestion(AD) performance[J]. Environmental Research, 2022, 204:112043. doi: 10.1016/j.envres.2021.112043
|
29 |
SHI Zhenqing, NURMI J T, TRATNYEK P G. Effects of nano zero-valent iron on oxidation-reduction potential[J]. Environmental Science & Technology, 2011, 45(4):1586-1592. doi: 10.1021/es103185t
|
30 |
|
|
ZHAO Zhiqiang, LI Yang, ZHANG Yaobin. Direct interspecies electron transfer in anaerobic digestion:Research and technological application[J]. Chinese Science Bulletin, 2020, 65(26):2820-2834. doi: 10.1360/tb-2020-0661
|
31 |
JIN Rong, XU Jiajia, WANG Zhuoqin,et al. Successive choline addition enhancing the methanogenesis of waste activated sludge anaerobic digestion:Insight from hydrophilicity,electrochemical performance and microbial community[J]. Journal of Environmental Management, 2023, 327:116899. doi: 10.1016/j.jenvman.2022.116899
|
32 |
ZHANG Quanguo, HU Jianjun, LEE D J. Biogas from anaerobic digestion processes:Research updates[J]. Renewable Energy, 2016, 98:108-119. doi: 10.1016/j.renene.2016.02.029
|
33 |
DI Lu, ZHANG Quanguo, WANG Fang,et al. Effect of nano-Fe 3O 4 biochar on anaerobic digestion of chicken manure under high ammonia nitrogen concentration[J]. Journal of Cleaner Production, 2022, 375:134107. doi: 10.1016/j.jclepro.2022.134107
|
34 |
LIU Yiwei, LI Xiang, WU Shaohua,et al. Enhancing anaerobic digestion process with addition of conductive materials[J]. Chemosphere, 2021, 278:130449. doi: 10.1016/j.chemosphere.2021.130449
|
35 |
SONG Xiangru, LIU Jia, JIANG Qing,et al. Enhanced electron transfer and methane production from low-strength wastewater using a new granular activated carbon modified with nano-Fe 3O 4 [J]. Chemical Engineering Journal, 2019, 374:1344-1352. doi: 10.1016/j.cej.2019.05.216
|
36 |
MA Shuaishuai, WANG Hongliang, WANG Binshou,et al. Biomethane enhancement from corn straw using anaerobic digestion by-products as pretreatment agents:A highly effective and green strategy[J]. Bioresource Technology, 2021, 344:126177. doi: 10.1016/j.biortech.2021.126177
|
37 |
KURODA K, NARIHIRO T, NOBU M K,et al. Ecogenomics reveals microbial metabolic networks in a psychrophilic methanogenic bioreactor treating soy sauce production wastewater[J]. Microbes and Environments, 2021, 36(4):ME21045. doi: 10.1264/jsme2.me21045
|
38 |
FITAMO T, TREU L, BOLDRIN A,et al. Microbial population dynamics in urban organic waste anaerobic co-digestion with mixed sludge during a change in feedstock composition and different hydraulic retention times[J]. Water Research, 2017, 118:261-271. doi: 10.1016/j.watres.2017.04.012
|
39 |
LI Junrou, CHEN Ting, YIN Jun,et al. Effect of nano-magnetite on the propionic acid degradation in anaerobic digestion system with acclimated sludge[J]. Bioresource Technology, 2021, 334:125143. doi: 10.1016/j.biortech.2021.125143
|
40 |
FAN Qingwen, FAN Xiaojing, FU Peng,et al. Microbial community evolution,interaction,and functional genes prediction during anaerobic digestion in the presence of refractory organics[J]. Journal of Environmental Chemical Engineering, 2022, 10(3):107789. doi: 10.1016/j.jece.2022.107789
|
41 |
TAN R, MIYANAGA K, TOYAMA K,et al. Changes in composition and microbial communities in excess sludge after heat-alkaline treatment and acclimation[J]. Biochemical Engineering Journal, 2010, 52(2/3):151-159. doi: 10.1016/j.bej.2010.08.001
|
42 |
UEKI A. Paludibacter propionicigenes gen.nov.,sp. nov.,a novel strictly anaerobic,Gram-negative,propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(1):39-44. doi: 10.1099/ijs.0.63896-0
|
43 |
SIEBER J R, SIMS D R, HAN C,et al. The genome of Syntrophomonas wolfei:New insights into syntrophic metabolism and biohydrogen production[J]. Environmental Microbiology, 2010, 12(8):2289-2301. doi: 10.1111/j.1462-2920.2010.02237.x
|
44 |
DOBBIN P S, CARTER J P, GARCÍA-SALAMANCA S J C,et al. Dissimilatory Fe(Ⅲ) reduction by Clostridium beijerinckii isolated from freshwater sediment using Fe(Ⅲ) maltol enrichment[J]. FEMS Microbiology Letters, 1999, 176(1):131-138. doi: 10.1016/s0378-1097(99)00229-3
|
45 |
MEI Ran, NOBU M K, NARIHIRO T,et al. Novel Geobacter species and diverse methanogens contribute to enhanced methane production in media-added methanogenic reactors[J]. Water Research, 2018, 147:403-412. doi: 10.1016/j.watres.2018.10.026
|