Industrial Water Treatment ›› 2025, Vol. 45 ›› Issue (6): 167-178. doi: 10.19965/j.cnki.iwt.2024-0453

• RESEARCH AND EXPERIMENT • Previous Articles    

Treatment of protein-containing organic wastewater by “electrical” collaboration between dissimilatory iron reduction and methanogenesis

Xinwei ZHOU1(), Xiangzhuang FU1, Mengxia GUO2, Wen XU2, Dexin WANG1()   

  1. 1. School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
    2. School of Ecology, Hainan University, Haikou 570228, China
  • Received:2025-03-03 Online:2025-06-20 Published:2025-06-19
  • Contact: Dexin WANG

异化铁还原“电”耦合甲烷化处理蛋白质有机废水

周欣玮1(), 符祥壮1, 郭梦霞2, 徐文2, 王德欣1()   

  1. 1. 海南大学环境科学与工程学院,海南 海口 570228
    2. 海南大学生态学院,海南 海口 570228
  • 通讯作者: 王德欣
  • 作者简介:

    周欣玮(1999— ),硕士,E-mail:

  • 基金资助:
    国家自然科学基金项目(52100038); 海口市重点科技计划项目(2021003)

Abstract:

Aiming at the problems of poor methane performance and acids accumulation in the anaerobic digestion process of protein-containing organic wastewater, Fe3O4 was used as an exogenous electronic mediator to construct a magnetite-mediated anaerobic digestion system of protein-containing organic wastewater. The operational efficiency of the system was researched, the physiological characteristics of sludge in the reactor were analyzed, and the response mechanism of community succession to different Fe3O4 doses was explored. The results showed that the maximum optimization of anaerobic fermentation could be achieved under experimental conditions with the Fe3O4 dosage of 40 mg/g in unit VSS. Compared with the control group without Fe3O4, the degradation rate of soluble chemical oxygen demand(SCOD) and cumulative CH4 production increased by (27.23±4.16)% and (26.50±3.25)%, respectively, while the cumulative CO2 production decreased by (82.08±2.43)%. The analysis of physiological characteristics of sludge showed that the addition of Fe3O4 could promote sludge aggregation and enhance electron transfer ability. The analysis of microbial community changes showed that the addition of 40 mg/g Fe3O4 could promote the enrichment of syntrophic genus Syntrophomonas, iron-reducing bacteria genus Clostridium, and acetoclastic archaea Methanosaeta. Thus, an electron transfer mode of dissimilar iron reduction coupled with methanation could be established, thereby improving the efficiency of interspecific electron transfer and enhancing the degradation of pollutants in protein organic wastewater and the final methanation process.

Key words: anaerobic digestion, protein-containing organic wastewater, magnetite, microbial population, direct interspecific electron transfer

摘要:

针对蛋白质有机废水厌氧消化过程中出现的产甲烷性能不佳、易于酸积累等问题,利用Fe3O4作为外源电子介体构建Fe3O4介导的蛋白质有机废水厌氧消化体系,考察体系的运行效能,分析反应器中污泥的生理特征,并探究群落演替对不同Fe3O4剂量的响应机制。研究结果表明,实验条件下每克VSS中添加40 mg的Fe3O4能够实现体系厌氧发酵性能的最大优化,相较于未添加Fe3O4的对照组,溶解性化学需氧量(SCOD)降解率与累积CH4产量分别提高了(27.23±4.16)%和(26.50±3.25)%,累积CO2产量降低了(82.08±2.43)%。污泥生理特征分析表明,Fe3O4的添加能够促进污泥团聚,增强电子转移能力。微生物群落变化分析表明,添加40 mg/g的Fe3O4可促进互营菌属Syntrophomonas、铁还原菌属Clostridium和嗜乙酸型产甲烷古菌Methanosaeta的富集,从而形成异化铁还原耦合甲烷化的电子传递模式,提升种间电子传递效率,强化蛋白质有机废水中污染物的降解以及最终甲烷化的过程。

关键词: 厌氧消化, 蛋白质有机废水, 磁铁矿, 微生物种群, 直接种间电子传递

CLC Number: