| [1] |
许兵,杨晓彤,刘佳,等. 太阳能界面蒸发可持续离网脱盐技术研究[J]. 工业水处理,2024,44(4):58-65.
|
|
XU Bing, YANG Xiaotong, LIU Jia,et al. Research on sustainable off-grid desalination technology of solar interfacial evaporation[J]. Industrial Water Treatment,2024,44(4):58-65.
|
| [2] |
许颖. 太阳能界面蒸发体的设计及其海水淡化特性的研究[D]. 哈尔滨:哈尔滨工业大学,2020.
|
|
XU Ying. Deigen of solar interfacial evaporation and study of seawater desalination characteristic[D]. Harbin:Harbin Institute of Technology,2020.
|
| [3] |
TIAN Yankuan, SONG Rui, LI Yiju,et al. Biomimetic structural design of fabric for low-cost,scalable,and highly efficient off-grid solar-driven water purification[J]. Advanced Functional Materials, 2024, 34(19):2309470. doi: 10.1002/adfm.202309470
|
| [4] |
LUO Xiao, SHI Jincheng, ZHAO Changying,et al. The energy efficiency of interfacial solar desalination[J]. Applied Energy, 2021, 302:117581. doi: 10.1016/j.apenergy.2021.117581
|
| [5] |
CHEN Chaoji, KUANG Yudi, HU Liangbing. Challenges and opportunities for solar evaporation[J]. Joule, 2019, 3(3):683-718. doi: 10.1016/j.joule.2018.12.023
|
| [6] |
ZOU Hongqi, MENG Xiangtong, ZHAO Xin,et al. Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination[J]. Advanced Materials, 2023, 35(5):2207262. doi: 10.1002/adma.202207262
|
| [7] |
孙梦茜,陈志莉,陈黎,等. 太阳能驱动界面蒸发海水淡化技术研究进展[J]. 太阳能学报,2024,45(8):423-431.
|
|
SUN Mengxi, CHEN Zhili, CHEN Li,et al. Research progress of solar-driven interface evaporation for seawater desalination[J]. Acta Energiae Solaris Sinica,2024,45(8):423-431.
|
| [8] |
胡颖,安显慧,钱学仁. 聚吡咯/纸浆纤维复合光热纸的制备及其太阳能驱动界面水蒸发研究[J]. 中国造纸,2022,41(11):113-123.
|
|
HU Ying, AN Xianhui, QIAN Xueren. Study on preparation of polypyrrole/pulp fiber composite photothermal paper and its solar-driven interfacial water evaporation[J]. China Pulp & Paper,2022,41(11):113-123.
|
| [9] |
TAO Peng, NI G, SONG Chengyi,et al. Solar-driven interfacial evaporation[J]. Nature Energy, 2018, 3(12):1031-1041. doi: 10.1038/s41560-018-0260-7
|
| [10] |
WU Xuan, LU Yi, REN Xiaohu,et al. Interfacial solar evaporation:From fundamental research to applications[J]. Advanced Materials, 2024, 36(23):2313090. doi: 10.1002/adma.202313090
|
| [11] |
SHI Peiru, LI Jinlei, SONG Yan,et al. Cogeneration of clean water and valuable energy/resources via interfacial solar evaporation[J]. Nano Letters, 2024, 24(19):5673-5682. doi: 10.1021/acs.nanolett.4c00643
|
| [12] |
闫佳宇. 多孔气凝胶体系的构建及其在盐碱水淡化中的应用[D]. 石河子:石河子大学,2023.
|
|
YAN Jiayu. Construction of porous aerogel system and application in desalination of saline alkali water[D]. Shihezi:Shihezi University,2023.
|
| [13] |
DANG Chenyang, CAO Yunteng, NIE Huijie,et al. Structure integration and architecture of solar-driven interfacial desalination from miniaturization designs to industrial applications[J]. Nature Water, 2024, 2(2):115-126. doi: 10.1038/s44221-024-00200-1
|
| [14] |
XU Ning, LI Jinlei, FINNERTY C,et al. Going beyond efficiency for solar evaporation[J]. Nature Water, 2023, 1(6):494-501. doi: 10.1038/s44221-023-00086-5
|
| [15] |
WANG Meng, WEI Y, LI Ruoxin,et al. Sustainable seawater desalination and energy management:Mechanisms,strategies,and the way forward[J]. Research, 2023, 6:0290. doi: 10.34133/research.0290
|
| [16] |
ZUO Shiyu, XIA Dongsheng, GUAN Zeyu,et al. Dual-functional CuO/CN for highly efficient solar evaporation and water purification[J]. Separation and Purification Technology, 2021, 254:117611. doi: 10.1016/j.seppur.2020.117611
|
| [17] |
CUI Lingfang, WANG Peifang, CHE Huinan,et al. Environmental energy enhanced solar-driven evaporator with spontaneous internal convection for highly efficient water purification[J]. Water Research, 2023, 244:120514. doi: 10.1016/j.watres.2023.120514
|
| [18] |
XIAO Yangyi, LI Chenxing, ZHOU Xiaojiao,et al. Removal of typical volatile organic compounds in condensed freshwater by activated persulfate during interfacial solar distillation[J]. ACS ES&T Water, 2021, 1(11):2423-2430. doi: 10.1021/acsestwater.1c00261
|
| [19] |
ZHANG Baoping, WONG P W, AN A K. Photothermally enabled MXene hydrogel membrane with integrated solar-driven evaporation and photodegradation for efficient water purification[J]. Chemical Engineering Journal, 2022, 430:133054. doi: 10.1016/j.cej.2021.133054
|
| [20] |
张义东,袁家相,方伟,等. 泡沫碳负载一维TiO2光热催化蒸发器的制备及污水蒸发降解性能[J]. 高等学校化学学报,2024,45(10):101-111.
|
|
ZHANG Yidong, YUAN Jiaxiang, FANG Wei,et al. Preparation of carbon foam-loaded one-dimensional TiO2 for photothermal catalytic evaporators and its performances of evaporation and degradation for wastewater[J]. Chemical Journal of Chinese Universities,2024,45(10):101-111.
|
| [21] |
MA Xu, DENG Zheng, LI Zhuoyi,et al. A photothermal and Fenton active MOF-based membrane for high-efficiency solar water evaporation and clean water production[J]. Journal of Materials Chemistry A, 2020, 8(43):22728-22735. doi: 10.1039/d0ta08101a
|
| [22] |
WEN Jin, LI Xiaoke, ZHANG He,et al. Architecting Janus hydrogel evaporator with polydopamine-TiO 2 photocatalyst for high-efficient solar desalination and purification[J]. Separation and Purification Technology, 2023, 304:122403. doi: 10.1016/j.seppur.2022.122403
|
| [23] |
YU Shudong, GU Yuheng, CHAO Xujiang,et al. Recent advances in interfacial solar vapor generation:Clean water production and beyond[J]. Journal of Materials Chemistry A, 2023, 11(12):5978-6015. doi: 10.1039/d2ta10083e
|
| [24] |
DAO V D, VU N H, YUN Sining. Recent advances and challenges for solar-driven water evaporation system toward applications[J]. Nano Energy, 2020, 68:104324. doi: 10.1016/j.nanoen.2019.104324
|
| [25] |
XU Keyuan, WANG Chengbing, LI Zhengtong,et al. Salt mitigation strategies of solar-driven interfacial desalination[J]. Advanced Functional Materials, 2021, 31(8):2007855. doi: 10.1002/adfm.202007855
|
| [26] |
景欣欣,王伟铎,莫何苏,等. 光热材料在太阳能海水脱盐中应用的研究进展[J]. 无机化学学报,2024,40(6):1033-1064.
|
|
JING Xinxin, WANG Weiduo, MO Hesu,et al. Research progress on photothermal materials and their application in solar desalination[J]. Chinese Journal of Inorganic Chemistry,2024,40(6):1033-1064.
|
| [27] |
孔岩. 生物质基光热界面材料的制备及其在高盐废水中的应用研究[D]. 济南:山东大学,2023.
|
|
KONG Yan. Preparation of biomass-based photothermal interface material and its application in high salt wastewater[D]. Ji′nan:Shandong University,2023.
|
| [28] |
CHEN Xi, HE Shuaiming, FALINSKI M M,et al. Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators[J]. Energy & Environmental Science, 2021, 14(10):5347-5357. doi: 10.1039/d1ee01505b
|
| [29] |
YANG He, SUN Yinghui, PENG Meiwen,et al. Tailoring the salt transport flux of solar evaporators for a highly effective salt-resistant desalination with high productivity[J]. ACS Nano, 2022, 16(2):2511-2520. doi: 10.1021/acsnano.1c09124
|
| [30] |
ZHANG He, DU Yuping, JING Dengwei,et al. Integrated Janus evaporator with an enhanced donnan effect and thermal localization for salt-tolerant solar desalination and thermal-to-electricity generation[J]. ACS Applied Materials & Interfaces, 2023, 15(42):49892-49901. doi: 10.1021/acsami.3c12517
|
| [31] |
ZHANG Xu, ZHANG Xinyu, MA Liang,et al. Tailoring anionic solar evaporator with an enhanced Donnan effect for a highly effective salt resistance desalination and water purification[J]. Separation and Purification Technology, 2025, 353:128325. doi: 10.1016/j.seppur.2024.128325
|
| [32] |
TONG Tiezheng, ELIMELECH M. The global rise of zero liquid discharge for wastewater management:Drivers,technologies,and future directions[J]. Environmental Science & Technology, 2016, 50(13):6846-6855. doi: 10.1021/acs.est.6b01000
|
| [33] |
MENON A K, HAECHLER I, KAUR S,et al. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management[J]. Nature Sustainability, 2020, 3(2):144-151. doi: 10.1038/s41893-019-0445-5
|
| [34] |
XIONG Qianqian, WANG Deyu, SHAO Bo,et al. Unlocking zero liquid discharge:A parallel water supply strategy to realize selective salt crystallization for long-term interfacial solar evaporation[J]. Advanced Functional Materials, 2025, 35(7):2409257. doi: 10.1002/adfm.202409257
|
| [35] |
ZHANG Chenlin, SHI Y, SHI Le,et al. Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge[J]. Nature Communications, 2021, 12:998. doi: 10.1038/s41467-021-21124-4
|
| [36] |
张卜生. 煤基纳米碳的制备及其在光热界面水蒸发中的应用[D]. 北京:北京科技大学,2024.
|
|
ZHANG Bosheng. Preparation of coal-based nanocarbon and its application in water evaporation at photothermal interface[D]. Beijing:University of Science and Technology Beijing,2024.
|
| [37] |
SU Xin, HAO Dezhao, SUN Mingyue,et al. Nature sunflower stalk pith with zwitterionic hydrogel coating for highly efficient and sustainable solar evaporation[J]. Advanced Functional Materials, 2022, 32(6):2108135. doi: 10.1002/adfm.202108135
|
| [38] |
SU Qin, YAN Jun, XIAO Wei,et al. Flexible nanofiber composite solar evaporator for simultaneous interfacial evaporation and heavy metal ion adsorption[J]. Chemical Engineering Journal, 2024, 490:151814. doi: 10.1016/j.cej.2024.151814
|
| [39] |
ZHANG Shenxiang, WEI Xian, CAO Xue,et al. Solar-driven membrane separation for direct lithium extraction from artificial salt-lake brine[J]. Nature Communications, 2024, 15(1):238. doi: 10.1038/s41467-023-44625-w
|
| [40] |
CHEN Kai, LI Lingxiao, LI Bucheng,et al. Simultaneous fresh water collection and Li + selective adsorption enabled by A salt-resistant separated solar evaporator[J]. Advanced Functional Materials, 2024, 34(37):2402221. doi: 10.1002/adfm.202402221
|
| [41] |
HE Panpan, BAI Huiying, FAN Zifen,et al. Controllable synthesis of N/Co-doped carbon from metal-organic frameworks for integrated solar vapor generation and advanced oxidation processes[J]. Journal of Materials Chemistry A, 2022, 10(25):13378-13392. doi: 10.1039/d2ta02767d
|
| [42] |
WANG Zhenyu, XU Lei, LIU Caihua,et al. MXene/CdS photothermal-photocatalytic hydrogels for efficient solar water evaporation and synergistic degradation of VOC[J]. Journal of Materials Chemistry A, 2024, 12(18):10991-11003. doi: 10.1039/d4ta00038b
|
| [43] |
SHI Kaili, SHENG Kai, HOU Jingwei,et al. Photothermal coordination polymer with temperature-induced molecular deformation for efficient interfacial evaporation and catalysis[J]. Advanced Functional Materials, 2025:2425522. doi: 10.1002/adfm.202425522
|
| [44] |
FU Yanli, XIE Litao, LI Jing,et al. Simultaneous solar-driven interfacial evaporation and phenol degradation using three-dimensional MoS 2-melamine foam[J]. Chemical Engineering Journal, 2024, 500:156929. doi: 10.1016/j.cej.2024.156929
|
| [45] |
QIU Chunxia, CHEN Tiantian, Bowen LÜ,et al. Aquatic plants-inspired biomimetic evaporator enabling efficient organic pollutants removal for in-depth water purification[J]. Chemical Engineering Journal, 2025, 508:160989. doi: 10.1016/j.cej.2025.160989
|
| [46] |
DJELLABI R, NOUREEN L, DAO V D,et al. Recent advances and challenges of emerging solar-driven steam and the contribution of photocatalytic effect[J]. Chemical Engineering Journal, 2022, 431:134024. doi: 10.1016/j.cej.2021.134024
|
| [47] |
WULAYIMUJIANG B, GUO Fang, MA Qianyu,et al. An all-in-one aPAN/MXene@Ag-Ag 2S nanofibrous aerogel for efficient oil/water separation,solar interfacial evaporation and photocatalytic degradation of high-concentration dyes[J]. Journal of Materials Chemistry A, 2024, 12(30):19187-19200. doi: 10.1039/d4ta03566f
|
| [48] |
ZHANG Bin, WU Wanze, YIN Guanchao,et al. A multifunctional synergistic solar-driven interfacial evaporator for desalination and photocatalytic degradation[J]. ACS Applied Materials & Interfaces, 2025, 17(4):6948-6956. doi: 10.1021/acsami.4c19137
|
| [49] |
YU Zhen, LI Yang, ZHANG Yaoxin,et al. Microplastic detection and remediation through efficient interfacial solar evaporation for immaculate water production[J]. Nature Communications, 2024, 15(1):6081. doi: 10.1038/s41467-024-50421-x
|
| [50] |
GAO Xiyuan, SUN Lei, HAO Pengyu,et al. Construction of black g-C 3N 4/loofah/chitosan hydrogel as an efficient solar evaporator for desalination coupled with antibiotic degradation[J]. Separation and Purification Technology, 2025, 355:129615. doi: 10.1016/j.seppur.2024.129615
|
| [51] |
ZHANG Xu, CONG Haibing, MA Liang,et al. Jellyfish-inspired sustainable and facile porous zwitterionic hydrogel sponge for efficient solar thermal desalination and water purification[J]. Chemical Engineering Journal, 2024, 487:150754. doi: 10.1016/j.cej.2024.150754
|