Industrial Water Treatment ›› 2022, Vol. 42 ›› Issue (2): 168-172. doi: 10.19965/j.cnki.iwt.2021-0493

• PROJECT CASE • Previous Articles     Next Articles

Practical operation of solar battery wastewater treatment plant

Liang CHEN1(), Weiming ZHANG2,3, Yujuan SHEN1, Bo ZHOU1   

  1. 1. EastChina Branch,China Machinery International Engineering Design & Research Institute Co. ,Ltd. ,Nanjing 210023,China
    2. State Key Laboratory of Pollution Control & Resource Reuse,School of the Environment,Nanjing University,Nanjing 210023,China
    3. State Environmental Protection Engineering Center for Organic Chemical Industrial Wastewater Disposal and Resource Reuse,Jiangsu NJU Environmental Technology Co. ,Ltd. ,Nanjing 210046,China
  • Received:2021-12-22 Online:2022-02-20 Published:2022-03-15

太阳能电池生产废水处理运行实践

陈良1(), 张炜铭2,3, 沈玉娟1, 周波1   

  1. 1. 中机国际工程设计研究院有限责任公司华东分院, 江苏 南京 210023
    2. 南京大学环境学院污染控制与资源化研究国家重点实验室, 江苏 南京 210023
    3. 江苏南大环保科技有限公司国家环境保护有机化工废水处理与资源化工程技术中心, 江苏 南京 210046
  • 作者简介:

    陈良(1991— ),硕士,工程师。电话:18205186916,E⁃mail:

  • 基金资助:
    国家重点研发计划“纳米科技”重点专项(2016YFA0203100)

Abstract:

A three-stage coagulation precipitation+hydrolytic acidification+denitrification-nitrification biochemical method was adopted to treat solar battery wastewater from a photovoltaic company in Taixing,which featured high concentration of fluoride and nitrogen. Engineering debugging and long-term operation practice showed that the water quality of the treated effluent could meet the discharge standards depicted in Table 2 in the Emission Standard of Pollutants for Battery Industry(GB 30484—2013). The fluoride and total nitrogen concentration in the treated effluent were less than 8 mg/L and 40 mg/L,respectively. Particular attentions should be paid to control the impact of influent H2O2,pH of secondary coagulation reaction and filamentous expansion of biochemical tank. The results of this study can provide reference for engineering practice and treatment of similar wastewaters.

Key words: solar battery wastewater, high-concentration fluorine-containing, high-concentration nitrogen-containing, operation control

摘要:

针对泰兴某光伏公司生产太阳能电池过程中产生的高浓度含氟和含氮废水,采用“三级混凝沉淀+水解酸化+反硝化-硝化生化法”工艺进行处理。工程调试和长期运行实践表明,出水污染物指标均满足《电池工业污染物排放标准》(GB 30484—2013)中表2规定的排放限值,其中F-质量浓度<8 mg/L,TN<40 mg/L。同时运行过程中应加强对进水中H2O2冲击、二级混凝反应pH及生化池污泥丝状膨胀的控制。本研究旨在为同类工业废水处理工程提供参考。

关键词: 光伏废水, 高浓度含氟废水, 高浓度含氮废水, 工艺控制

CLC Number: