1 |
NISHAD P A, BHASKARAPILLAI A. Antimony,a pollutant of emerging concern:A review on industrial sources and remediation technologies[J]. Chemosphere,2021,277: 130252. doi:10.1016/j.chemosphere.2021.130252
doi: 10.1016/j.chemosphere.2021.130252
|
2 |
RAN Zhilin, YAO Meng, HE Weipeng,et al. Efficiency analysis of enhanced Sb(Ⅴ) removal via dynamic preloaded floc in coordination with ultrafiltration[J]. Separation and Purification Technology,2020,249:117115. doi:10.1016/j.seppur.2020.117115
doi: 10.1016/j.seppur.2020.117115
|
3 |
李冬丽,张国平,马超,等. 化学合成硫化亚铁(FeS)对三价锑的吸附作用研究[J]. 地球与环境,2019,47(5):738-744.
|
|
LI Dongli, ZHANG Gouping, MA Chao,et al. Sorption of Sb(Ⅲ) on synthesized iron sulfide(FeS)[J]. Earth and Environment,2019,47(5):738-744.
|
4 |
ZHANG Haikun, HU Xiaoke. Bioadsorption and microbe-mediated reduction of Sb(Ⅴ) by a marine bacterium in the presence of sulfite/thiosulfate and the mechanism study[J]. Chemical Engineering Journal,2019,359:755-764. doi:10.1016/j.cej.2018.11.168
doi: 10.1016/j.cej.2018.11.168
|
5 |
CHEN Can, WANG Jianlong. Characteristics and kinetics of Zn2+ biosorption by Saccharomyces cerevisiae [J]. Journal of Tsinghua University,2006,20(12):478.
|
6 |
ROMERA E, GONZÁLEZ F, BALLESTER A,et al. Biosorption with Algae:A statistical review[J]. Critical Reviews in Biotechnology,2006,26(4):223-235. doi:10.1080/07388550600972153
doi: 10.1080/07388550600972153
|
7 |
LIU Ting, HAN Xiao, WANG Yaoguang,et al. Magnetic chitosan/anaerobic granular sludge composite:Synthesis,characterization and application in heavy metal ions removal[J]. Journal of Colloid and Interface Science,2017,508:405-414. doi:10.1016/j.jcis.2017.08.067
doi: 10.1016/j.jcis.2017.08.067
|
8 |
HE Zhanfei, ZHANG Qingying, WEI Zhen,et al. Multiple-pathway arsenic oxidation and removal from wastewater by a novel manganese-oxidizing aerobic granular sludge[J]. Water Research,2019,157:83-93. doi:10.1016/j.watres.2019.03.064
doi: 10.1016/j.watres.2019.03.064
|
9 |
WANG Li, LIU Xiang, LEE D,et al. Recent advances on biosorption by aerobic granular sludge[J]. Journal of Hazardous Materials,2018,357:253-270. doi:10.1016/j.jhazmat.2018.06.010
doi: 10.1016/j.jhazmat.2018.06.010
|
10 |
MOLAEY R, YESIL H, CALLI B,et al. Enhanced heavy metal leaching from sewage sludge through anaerobic fermentation and air-assisted ultrasonication[J]. Chemosphere,2021,279:130548. doi:10.1016/j.chemosphere.2021.130548
doi: 10.1016/j.chemosphere.2021.130548
|
11 |
WEI Dong, LI Mengting, WANG Xiaodong,et al. Extracellular polymeric substances for Zn(Ⅱ) binding during its sorption process onto aerobic granular sludge[J]. Journal of Hazardous Materials,2016,301:407-415. doi:10.1016/j.jhazmat.2015.09.018
doi: 10.1016/j.jhazmat.2015.09.018
|
12 |
ZHANG Peng, XU Xiaoyan, ZHANG Xuelin,et al. Nanoparticles-EPS corona increases the accumulation of heavy metals and biotoxicity of nanoparticles[J]. Journal of Hazardous Materials,2021,409:124526. doi:10.1016/j.jhazmat.2020.124526
doi: 10.1016/j.jhazmat.2020.124526
|
13 |
ZENG Taotao, RENE E R, ZHANG Shiqi,et al. Removal of selenate and cadmium by anaerobic granular sludge:EPS characterization and microbial community analysis[J]. Process Safety and Environmental Protection,2019,126:150-159. doi:10.1016/j.psep.2019.03.039
doi: 10.1016/j.psep.2019.03.039
|
14 |
TANG Chongjian, CHEN Xi, FENG Fan,et al. Roles of bacterial cell and extracellular polymeric substance on adsorption of Cu(Ⅱ) in activated sludges:A comparative study[J]. Journal of Water Process Engineering,2021,41:102094. doi:10.1016/j.jwpe.2021.102094
doi: 10.1016/j.jwpe.2021.102094
|
15 |
MA Jingyun, QUAN Xiangchun, SI Xiurong,et al. Responses of anaerobic granule and flocculent sludge to ceria nanoparticles and toxic mechanisms[J]. Bioresource Technology,2013,149:346-352. doi:10.1016/j.biortech.2013.09.080
doi: 10.1016/j.biortech.2013.09.080
|
16 |
WEI Liangliang, LI Yang, NOGUERA D R,et al. Adsorption of Cu2+ and Zn2+ by extracellular polymeric substances(EPS) in different sludges:Effect of EPS fractional polarity on binding mechanism[J]. Journal of Hazardous Materials,2017,321:473-483. doi:10.1016/j.jhazmat.2016.05.016
doi: 10.1016/j.jhazmat.2016.05.016
|
17 |
徐宏英,李亚新,岳秀萍,等. ⅠⅡ-ASBR中厌氧颗粒污泥的微生物组成及特性[J]. 环境科学与技术,2009,32(4):42-46. doi:10.3969/j.issn.1003-6504.2009.04.010
doi: 10.3969/j.issn.1003-6504.2009.04.010
|
|
XU Hongying, LI Yaxin, YUE Xiuping,et al. Microbiological characteristics and composing of anaerobic granular sludge in ⅠⅡ-ASBR[J]. Environmental Science & Technology,2009,32(4):42-46. doi:10.3969/j.issn.1003-6504.2009.04.010
doi: 10.3969/j.issn.1003-6504.2009.04.010
|
18 |
LV Longyi, LI Weiguang, ZHENG Zejia,et al. Exogenous acyl-homoserine lactones adjust community structures of bacteria and methanogens to ameliorate the performance of anaerobic granular sludge[J]. Journal of Hazardous Materials,2018,354:72-80. doi:10.1016/j.jhazmat.2018.04.075
doi: 10.1016/j.jhazmat.2018.04.075
|
19 |
高艳娇,赵树立,刘舰. 两相厌氧工艺的研究进展[J]. 工业安全与环保,2006(1): 24-26. doi:10.3969/j.issn.1001-425X.2006.01.012
doi: 10.3969/j.issn.1001-425X.2006.01.012
|
|
GAO Yanjiao, ZHAO Shuli, LIU Jian. Research and development of two-phase anaerobic process[J]. Industrial Safety and Environmental Protection,2006(1): 24-26. doi:10.3969/j.issn.1001-425X.2006.01.012
doi: 10.3969/j.issn.1001-425X.2006.01.012
|
20 |
JEE H S, MANO T, NISHIO N,et al. Influence of redox potential on methanation of methanol by Methanosarcina barkeri in Eh-stat batch cultures[J]. Journal of Fermentation Technology,1988,66(1):123-126. doi:10.1016/0385-6380(88)90138-0
doi: 10.1016/0385-6380(88)90138-0
|
21 |
贾海亮,闵峰,苏晓东,等. 两相厌氧工艺在废水中的应用[J]. 广东化工,2011,38(2):135-136. doi:10.3969/j.issn.1007-1865.2011.02.063
doi: 10.3969/j.issn.1007-1865.2011.02.063
|
|
JIA Hailiang, MIN Feng, SU Xiaodong,et al. Application of two-phase anaerobic process in the wastewater[J]. Guangdong Chemical Industry,2011,38(2):135-136. doi:10.3969/j.issn.1007-1865.2011.02.063
doi: 10.3969/j.issn.1007-1865.2011.02.063
|
22 |
JADHAV D A, CHENDAKE A D, SCHIEVANO A,et al. Suppressing methanogens and enriching electrogens in bioelectrochemical systems[J]. Bioresource Technology,2019,277:148-156. doi:10.1016/j.biortech.2018.12.098
doi: 10.1016/j.biortech.2018.12.098
|
23 |
LI Xiaoyan, YANG Shufang. Influence of loosely bound extracellular polymeric substances(EPS) on the flocculation,sedimentation and dewaterability of activated sludge[J]. Water Research,2007,41(5):1022-1030. doi:10.1016/j.watres.2006.06.037
doi: 10.1016/j.watres.2006.06.037
|
24 |
TIAN Xiangmiao, SHEN Zhiqiang, HAN Zhenfang,et al. The effect of extracellular polymeric substances on exogenous highly toxic compounds in biological wastewater treatment:An overview[J]. Bioresource Technology Reports,2019,5:28-42. doi:10.1016/j.biteb.2018.11.009
doi: 10.1016/j.biteb.2018.11.009
|
25 |
SIDDHARTH T, SRIDHAR P, VINILA V,et al. Environmental applications of microbial extracellular polymeric substance(EPS):A review[J]. Journal of Environmental Management,2021,287:112307. doi:10.1016/j.jenvman.2021.112307
doi: 10.1016/j.jenvman.2021.112307
|
26 |
SHENG Guoping, ZHANG Menglin, YU Hanqing. Characterization of adsorption properties of extracellular polymeric substances(EPS) extracted from sludge[J]. Colloids and Surfaces B:Biointerfaces,2008,62(1):83-90. doi:10.1016/j.colsurfb.2007.09.024
doi: 10.1016/j.colsurfb.2007.09.024
|
27 |
SONG Wenjuan, PAN Xiangliang, MU Shuyong,et al. Biosorption of Hg(Ⅱ) onto goethite with extracellular polymeric substances[J]. Bioresource Technology,2014,160:119-122. doi:10.1016/j.biortech.2013.12.052
doi: 10.1016/j.biortech.2013.12.052
|
28 |
JI Peilun, TANG Rui, HE Ping,et al. Characterization of arsenic species in the anaerobic granular sludge treating roxarsone-contaminated wastewater[J]. Chemical Engineering Journal,2017,327:162-168. doi:10.1016/j.cej.2017.06.087
doi: 10.1016/j.cej.2017.06.087
|
29 |
徐富. 厌氧颗粒污泥规模化培养及其形成机制研究[D]. 无锡:江南大学,2013. doi:10.3724/sp.j.1145.2013.00862
doi: 10.3724/sp.j.1145.2013.00862
|
|
XU Fu. Study on large-scale cultivation and formation mechanism of anaerobic granular sludge[D]. Wuxi:Jiangnan University,2013. doi:10.3724/sp.j.1145.2013.00862
doi: 10.3724/sp.j.1145.2013.00862
|
30 |
MA Baiwen, WANG Xing, LIU Ruiping,et al. Enhanced antimony(Ⅴ) removal using synergistic effects of Fe hydrolytic flocs and ultrafiltration membrane with sludge discharge evaluation[J]. Water Research,2017,121:171-177. doi:10.1016/j.watres.2017.05.025
doi: 10.1016/j.watres.2017.05.025
|
31 |
HE Mengchang, WANG Ningning, LONG Xiaojing,et al. Antimony speciation in the environment:Recent advances in understanding the biogeochemical processes and ecological effects[J]. Journal of Environmental Sciences,2019,75:14-39. doi:10.1016/j.jes.2018.05.023
doi: 10.1016/j.jes.2018.05.023
|
32 |
WU Fengchang, SUN Fuhong, WU Shan,et al. Removal of antimony(Ⅲ) from aqueous solution by freshwater cyanobacteria Microcystis biomass[J]. Chemical Engineering Journal,2012,183:172-179. doi:10.1016/j.cej.2011.12.050
doi: 10.1016/j.cej.2011.12.050
|
33 |
MAQUELIN K, KIRSCHNER C, CHOO-SMITH L P,et al. Identification of medically relevant microorganisms by vibrational spectroscopy[J]. Journal of Microbiological Methods,2002,51(3):255-271. doi:10.1016/s0167-7012(02)00127-6
doi: 10.1016/s0167-7012(02)00127-6
|
34 |
ZHOU Lu, LI Ang, MA Fang,et al. Combining high electron transfer efficiency and oxidation resistance in nZVI with coatings of microbial extracellular polymeric substances to enhance Sb(Ⅴ) reduction and adsorption[J]. Chemical Engineering Journal,2020,395:125168. doi:10.1016/j.cej.2020.125168
doi: 10.1016/j.cej.2020.125168
|
35 |
PRADHAN S, SINGH S, RAI L C. Characterization of various functional groups present in the capsule of Microcystis and study of their role in biosorption of Fe,Ni and Cr[J]. Bioresource Technology,2007,98(3):595-601. doi:10.1016/j.biortech.2006.02.041
doi: 10.1016/j.biortech.2006.02.041
|
36 |
LI Jiayu, ZHENG Bohong, HE Yangzhou,et al. Antimony contamination,consequences and removal techniques:A review[J]. Ecotoxicology and Environmental Safety,2018,156:125-134. doi:10.1016/j.ecoenv.2018.03.024
doi: 10.1016/j.ecoenv.2018.03.024
|