1 |
LANDRIGAN P J, FULLER R, ACOSTA N J R,et al. The Lancet commission on pollution and health[J]. Lancet, 2018, 391:462-512. doi: 10.1016/s0140-6736(17)32345-0
|
2 |
WADHAWAN S, JAIN A, NAYYAR J,et al. Role of nanomaterials as adsorbents in heavy metal ion removal from waste water:A review[J]. Journal of Water Process Engineering, 2020, 33:101038. doi: 10.1016/j.jwpe.2019.101038
|
3 |
MU Yi, JIA Falong, AI Zhihui,et al. Iron oxide shell mediated environmental remediation properties of nano zero-valent iron[J]. Environmental Science:Nano, 2017, 4(1):27-45. doi: 10.1039/c6en00398b
|
4 |
|
|
ZHANG Shouqiu, CEN Jie, Deyi LÜ,et al. Removal of lead and chromium ions in water by nanoscale zero-valent iron[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(3):524-532. doi: 10.3969/j.issn.1003-9015.2019.03.003
|
5 |
WANG Wei, HUA Yilong, LI Shaolin,et al. Removal of Pb(Ⅱ) and Zn(Ⅱ) using lime and nanoscale zero-valent iron(nZVI):A comparative study[J]. Chemical Engineering Journal, 2016, 304:79-88. doi: 10.1016/j.cej.2016.06.069
|
6 |
LING Lan, HUANG Xiaoyue, ZHANG Weixian. Enrichment of precious metals from wastewater with core-shell nanoparticles of iron[J]. Advanced Materials, 2018, 30(17):e1705703. doi: 10.1002/adma.201705703
|
7 |
|
|
GU Tianhang, SHI Junming, HUA Yilong,et al. Enrichment of silver from water using nanoscale zero-valent iron(nZVI)[J]. Acta Chimica Sinica, 2017, 75(10):991-997. doi: 10.6023/a17070345
|
8 |
COSTA D, QUINTEIRO P, DIAS A,et al. A systematic review of life cycle sustainability assessment:Current state,methodological challenges,and implementation issues[J]. Science of the Total Environment, 2019, 686:774-787. doi: 10.1016/j.scitotenv.2019.05.435
|
9 |
PATI P, MCGINNIS S, VIKESLAND P J. Life cycle assessment of “green” nanoparticle synthesis methods[J]. Environmental Engineering Science, 2014, 31(7):410-420. doi: 10.1089/ees.2013.0444
|
10 |
张礼知,张伟贤. 铁环境化学:环境和地球化学的研究热点[J]. 化学学报,2017,75(6):519-520.
|
|
ZHANG Lizhi, ZHANG Weixian. Environmental chemistry of iron:A frontier in environmental chemistry and geochemistry[J]. Acta Chimica Sinica,2017,75(6):519-520.
|
11 |
WANG Peng, FU Fugang, LIU Tingyi. A review of the new multifunctional nano zero-valent iron composites for wastewater treatment:Emergence,preparation,optimization and mechanism[J]. Chemosphere, 2021, 285:131435. doi: 10.1016/j.chemosphere.2021.131435
|
12 |
束善治,袁勇. 污染地下水原位处理方法:可渗透反应墙[J]. 环境污染治理技术与设备,2002(1):47-51.
|
|
SHU Shanzhi, YUAN Yong. In situ remediation of contaminated ground water:Permeable reactive barrier[J]. Technigues and Equipment for Enviropollcont,2002(1):47-51.
|
13 |
|
|
CHEN Zhongru, ZHANG Chengbo, LI Hongyi,et al. On the structure and design of permeable reactive barrier[J]. Journal of Safety and Environment, 2012, 12(4):56-61. doi: 10.3969/j.issn.1009-6094.2012.04.013
|
14 |
李亮,徐建. 组合材料应用于可渗透反应墙技术的研究进展[J]. 工业水处理,2023,43(2):53-60.
|
|
LI Liang, XU Jian. Research progress of combined materials applied in permeable reaction barrier technology[J]. Industrial Water Treatment,2023,43(2):53-60.
|
15 |
TOSCO T. Nanoscale zerovalent iron particles for groundwater remediation:A review[J]. Journal of Cleaner Production, 2014, 77:10-21. doi: 10.1016/j.jclepro.2013.12.026
|
16 |
WU Yang, GUAN Chungyu, GRISWOLD N,et al. Zero-valent iron-based technologies for removal of heavy metal(loid)s and organic pollutants from the aquatic environment:Recent advances and perspectives[J]. Journal of Cleaner Production, 2020, 277:123478. doi: 10.1016/j.jclepro.2020.123478
|
17 |
FU Fenglian, DIONYSIOU D, LIU Hong. The use of zero-valent iron for groundwater remediation and wastewater treatment:A review[J]. Journal of Hazardous Materials, 2014, 267:194-205. doi: 10.1016/j.jhazmat.2013.12.062
|
18 |
|
|
YANG Yan, ZHU Jingping. Main reactions in denitrification system with zero valent iron addition[J]. Industrial Water Treatment, 2021, 41(3):77-82. doi: 10.11894/iwt.2020-0411
|
19 |
WANG Chuanbao, ZHANG Weixian. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs[J]. Environmental Science & Technology, 1997, 31(7):2154-2156. doi: 10.1021/es970039c
|
20 |
VARADHI S N, GILL H, APOLDO L J,et al. Full-scale nanoiron injection for treatment of groundwater contaminated with chlorinated hydrocarbons[C]// Proceedings of GTI Natural Gas Technologies 2005:What’s New and What’s Next,Orlando,2005.
|
21 |
CRANE R A. Nanoscale zero-valent iron:Future prospects for an emerging water treatment technology[J]. Journal of Hazardous Materials, 2012, 211/212:112-125. doi: 10.1016/j.jhazmat.2011.11.073
|
22 |
黄潇月,王伟,凌岚,等. 纳米零价铁与重金属的反应:“核-壳”结构在重金属去除中的作用[J]. 化学学报, 2017, 75(6):529-537. doi: 10.6023/a17020051
|
|
HUANG Xiaoyue, WANG Wei, LING Lan,et al. Heavy metal-nZVI reactions:The core-shell structure and applications for heavy metal treatment[J]. Acta Chimica Sinica, 2017, 75(6):529-537. doi: 10.6023/a17020051
|
23 |
SONG Yue. Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils:An in situ pilot-scale study[J]. Chemical Engineering Journal, 2019, 355:65-75. doi: 10.1016/j.cej.2018.08.126
|
24 |
|
25 |
JAMEI M R, KHOSRAVI M, ANVARIPOUR B,et al. A novel ultrasound assisted method in synthesis of nZVI particles[J]. Ultrasonics Sonochemistry, 2014, 21(1):226-233. doi: 10.1016/j.ultsonch.2013.04.015
|
26 |
ZHANG Yunxia, LI Tielong, JIN Zhaohui,et al. Synthesis of nanoiron by microemulsion with Span/Tween as mixed surfactants for reduction of nitrate in water[J]. Frontiers of Environmental Science & Engineering in China, 2007, 1(4):466-470. doi: 10.1007/s11783-007-0074-5
|
27 |
JIAO Weizhou. Simultaneous formation of nanoscale zero-valent iron and degradation of nitrobenzene in wastewater in an impinging stream-rotating packed bed reactor[J]. Chemical Engineering Journal, 2017, 321:564-571. doi: 10.1016/j.cej.2017.03.141
|
28 |
DE A, DE A K, PANDA G S,et al. Synthesis of zero valent iron nanoparticle and its application as a dephenolization agent for coke oven plant wastewater situated in West Bengal:India[J]. Environmental Progress & Sustainable Energy, 2017, 36(6):1700-1708. doi: 10.1002/ep.12634
|
29 |
CHEN S S, HSU H D, LI Chiwang. A new method to produce nanoscale iron for nitrate removal[J]. Journal of Nanoparticle Research, 2004, 6(6):639-647. doi: 10.1007/s11051-004-6672-2
|
30 |
ZHANG Huimin, RUAN Yang, LIANG Aiping,et al. Carbothermal reduction for preparing nZVI/BC to extract uranium:Insight into the iron species dependent uranium adsorption behavior[J]. Journal of Cleaner Production, 2019, 239:117873. doi: 10.1016/j.jclepro.2019.117873
|
31 |
HE Jiawei, AI Ling, WANG Yiyan,et al. Carbothermal synthesis of aerosol-based iron-carbon nanocomposites for adsorption and reduction of Cr(Ⅵ) nanoscale zerovalent iron particles for environmental restoration, 2019:495-510. doi: 10.1007/978-3-319-95340-3_14
|
32 |
MASUD A, CUI Yanbin, ATKINSON J D,et al. Shape matters:Cr(Ⅵ) removal using iron nanoparticle impregnated 1-D vs 2-D carbon nanohybrids prepared by ultrasonic spray pyrolysis[J]. Journal of Nanoparticle Research, 2018, 20(3):1-12. doi: 10.1007/s11051-018-4172-z
|
33 |
CHUN Chanlan, BAER D R, MATSON D W,et al. Characterization and reactivity of iron nanoparticles prepared with added Cu,Pd,and Ni[J]. Environmental Science & Technology, 2010, 44(13):5079-5085. doi: 10.1021/es903278e
|
34 |
OROPEZA S, COREA M, GÓMEZ-YÁÑEZ C,et al. Zero-valent iron nanoparticles preparation[J]. Materials Research Bulletin, 2012, 47(6):1478-1485. doi: 10.1016/j.materresbull.2012.02.026
|
35 |
LI Jie, CHEN Changlun, ZHANG Rui,et al. Nanoscale zero-valent iron particles supported on reduced graphene oxides by using a plasma technique and their application for removal of heavy-metal ions[J]. Chemistry-An Asian Journal, 2015, 10(6):1410-1417. doi: 10.1002/asia.201500242
|
36 |
SUN Hongqi, ZHOU Guanliang, LIU Shizhen,et al. Nano-Fe⁰ encapsulated in microcarbon spheres:Synthesis,characterization,and environmental applications[J]. ACS Applied Materials & Interfaces, 2012, 4(11):6235-6241. doi: 10.1021/am301829u
|
37 |
袁明亮,陶加华,余亮,等. 纳米铁-镍合金颗粒的制备及表征[J]. 过程工程学报,2011,11(1):158-161.
|
|
YUAN Mingliang, TAO Jiahua, YU Liang,et al. Preparation and characterization of iron-nickel alloy nanoparticles[J]. The Chinese Journal of Process Engineering,2011,11(1):158-161.
|
38 |
KOO C, HONG H, IM P W,et al. Magnetic and near-infrared derived heating characteristics of dimercaptosuccinic acid coated uniform Fe@Fe 3O 4 core-shell nanoparticles[J]. Nano Convergence, 2020, 7(1):20. doi: 10.1186/s40580-020-00229-4
|
39 |
HU Jun, ZHANG Feng, WANG Jing,et al. Synthesis of single-crystalline Fe nanowires using catalyst-assisted chemical vapor deposition[J]. Materials Letters, 2015, 160:529-532. doi: 10.1016/j.matlet.2015.06.043
|
40 |
WANG Yinan. Green synthesis of nanoparticles for the remediation of contaminated waters and soils:Constituents,synthesizing methods,and influencing factors[J]. Journal of Cleaner Production, 2019, 226:540-549. doi: 10.1016/j.jclepro.2019.04.128
|
41 |
刘清,邓真宁,滑熠龙,等. 纳米铁的绿色合成及其在环境中的应用研究进展[J]. 化工进展,2020(5):1950-1963.
|
|
LIU Qing, DENG Zhenning, HUA Yilong,et al. Green synthesis of Fe nanoparticles and their environmental applications[J]. Chemical Industry and Engineering Progress,2020(5):1950-1963.
|
42 |
|
|
WANG Peng, WANG Yidong, LIU Tingyi. Research progress of preparation of nano zero-valent iron by ball milling[J]. Environmental Chemistry, 2021, 40(9):2924-2933. doi: 10.7524/j.issn.0254-6108.2020050601
|
43 |
AKHGAR B N, POURGHAHRAMANI P I,et al. Implementation of sonochemical leaching for preparation of nano zero-valent iron(nZVI) from natural pyrite mechanochemically reacted with Al[J]. International Journal of Mineral Processing, 2017, 164:1-5. doi: 10.1016/j.minpro.2017.05.002
|
44 |
|
|
HUANG Kaijin, XIE Changsheng, XU Desheng. Development of nanoparticles synthesis by laser evaporation condensation[J]. Laser Technology, 2004, 28(1):5-11. doi: 10.3969/j.issn.1001-3806.2004.01.001
|
45 |
PATELLI N, CUGINI F, WANG Di,et al. Structure and magnetic properties of Fe-Co alloy nanoparticles synthesized by pulsed-laser inert gas condensation[J]. Journal of Alloys and Compounds, 2022, 890:161863. doi: 10.1016/j.jallcom.2021.161863
|
46 |
DE BONIS A, LOVAGLIO T, GALASSO A,et al. Iron and iron oxide nanoparticles obtained by ultra-short laser ablation in liquid[J]. Applied Surface Science, 2015, 353:433-438. doi: 10.1016/j.apsusc.2015.06.145
|
47 |
|
|
YE Kai, LIANG Feng, YAO Yaochun,et al. A survey on preparation of nanomaterials by DC arc plasma[J]. Materials Reports, 2019, 33(7):1089-1098. doi: 10.11896/cldb.18030013
|
48 |
杨晓丹,王玉如,李敏睿. 纳米零价铁的制备、改性及对废水中重金属和有机污染物的去除[J]. 化工进展,2019,38(7):3412-3424.
|
|
YANG Xiaodan, WANG Yuru, LI Minrui. Preparation,modification of nanoscale zero valent iron and its application for the removal of heavy metals and organic pollutants from wastewater[J]. Chemical Industry and Engineering Progress,2019,38(7):3412-3424.
|
49 |
彭楚才,王金相,童宗保,等. 电爆炸法制备纳米粉体材料的研究进展[J]. 材料科学与工程学报,2013,31(4):608-613.
|
|
PENG Chucai, WANG Jinxiang, TONG Zongbao,et al. Progress in the fabrication of nano powder materials using electrical explosion method[J]. Journal of Materials Science and Engineering,2013,31(4):608-613.
|
50 |
LI Qian, CHEN Zhongshan, WANG Huihui,et al. Removal of organic compounds by nanoscale zero-valent iron and its composites[J]. Science of the Total Environment, 2021, 792:148546. doi: 10.1016/j.scitotenv.2021.148546
|
51 |
|
|
HUANG Xuezheng, ZHANG Yongxiang, TIAN Zhenjun,et al. Research progress in synthesis,modification and field application of nano zero-valent iron[J]. Technology of Water Treatment, 2021, 47(1):12-18. doi: 10.16796/j.cnki.1000-3770.2021.01.003
|
52 |
JAMEI M R, KHOSRAVI M R, ANVARIPOUR B. Investigation of ultrasonic effect on synthesis of nano zero valent iron particles and comparison with conventional method[J]. Asia-Pacific Journal of Chemical Engineering, 2013, 8(5):767-774. doi: 10.1002/apj.1720
|
53 |
GARCIA A N, ZHANG Yanyan, GHOSHAL S,et al. Recent advances in sulfidated zerovalent iron for contaminant transformation[J]. Environmental Science & Technology, 2021, 55(13):8464-8483. doi: 10.1021/acs.est.1c01251
|
54 |
YIN Yaru, ZHENG Wenjuan, YAN An,et al. A review on montmorillonite-supported nanoscale zerovalent iron for contaminant removal from water and soil[J]. Adsorption Science & Technology, 2021, 2021:9340362. doi: 10.1155/2021/9340362
|
55 |
ZHAO Xiao, LIU Wen, CAI Zhengqing,et al. Reductive immobilization of uranium by stabilized zero-valent iron nanoparticles:Effects of stabilizers,water chemistry and long-term stability[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 604:125315. doi: 10.1016/j.colsurfa.2020.125315
|
56 |
ZHU Yongyang, OUYANG Liuzhang, ZHONG Hao,et al. Closing the loop for hydrogen storage:Facile regeneration of NaBH 4 from its hydrolytic product[J]. Angewandte Chemie:International Ed. in English, 2020, 59(22):8623-8629. doi: 10.1002/anie.201915988
|
57 |
DUYDU Y, BASARAN N, BOLT H,et al. Reproductive toxicity of boric acid and sodium borates[J]. Toxicology Letters, 2016, 258:S29. doi: 10.1016/j.toxlet.2016.06.1211
|
58 |
刘艳霞. 金属铁电沉积过程中的分形生长与调控规律研究[D]. 重庆:重庆大学,2019.
|
|
LIU Yanxia. Study on fractal growth and regulation in metallic iron electrodeposition[D]. Chongqing:Chongqing University,2019.
|
59 |
刘春泉,彭其春,薛正良,等. 电解铁粉的制备及压缩烧结性能[J]. 钢铁研究学报,2019,31(9):822-829.
|
|
LIU Chunquan, PENG Qichun, XUE Zhengliang,et al. Preparation of electrolytic iron powder and its compression sintering properties[J]. Journal of Iron and Steel Research,2019,31(9):822-829.
|
60 |
|
|
HUANG Hongbing, PENG Qichun, QIU Wentao. Preparation of high purity iron by industrial pure iron electrolysis[J]. Journal of Chongqing University, 2017, 40(12):59-70. doi: 10.11835/j.issn.1000-582X.2017.12.008
|
61 |
HOCH L B, MACK E J, HYDUTSKY B W,et al. Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium[J]. Environmental Science & Technology, 2008, 42(7):2600-2605. doi: 10.1021/es702589u
|
62 |
WAN Zhonghao, CHO D W, TSANG D,et al. Concurrent adsorption and micro-electrolysis of Cr(Ⅵ) by nanoscale zerovalent iron/biochar/Ca-alginate composite[J]. Environmental Pollution, 2019, 247:410-420. doi: 10.1016/j.envpol.2019.01.047
|
63 |
LIANG Weiyu, WANG Gehui, PENG Cheng. Recent advances of carbon-based nano zero valent iron for heavy metals remedia tion in soil and water:A critical review[J]. Journal of Hazardous Materials, 2022, 426:127993. doi: 10.1016/j.jhazmat.2021.127993
|
64 |
ZHOU Long, LI Zheng, YI Yunqiang. Increasing the electron selectivity of nanoscale zero-valent iron in environmental remediation:A review[J]. Journal of Hazardous Materials, 2022, 421:126709. doi: 10.1016/j.jhazmat.2021.126709
|
65 |
KUILA S K, CHATTERJEE R, GHOSH D,et al. Kinetics of hydrogen reduction of magnetite ore fines[J]. International Journal of Hydrogen Energy, 2016, 41(22):9256-9266. doi: 10.1016/j.ijhydene.2016.04.075
|
66 |
VISENTIN C, TRENTIN A, BRAUN A,et al. Nano scale zero valent iron production methods applied to contaminated sites remediation:An overview of production and environmental aspects[J]. Journal of Hazardous Materials, 2021, 410:124614. doi: 10.1016/j.jhazmat.2020.124614
|
67 |
VISENTIN C, TRENTIN A, BRAUN A,et al. Lifecycle assessment of environmental and economic impacts of nano-iron synthesis process for application in contaminated site remediation[J]. Journal of Cleaner Production, 2019, 231:307-319. doi: 10.1016/j.jclepro.2019.05.236
|
68 |
WANG Shengsen. Biochar-supported nZVI(nZVI/BC) for contaminant removal from soil and water:A critical review[J]. Journal of Hazardous Materials, 2019, 373:820-834. doi: 10.1016/j.jhazmat.2019.03.080
|
69 |
XIAO Zhengli. Plant-mediated synthesis of highly active iron nanoparticles for Cr(Ⅵ) removal:Investigation of the leading biomolecules[J]. Chemosphere, 2016, 150:357-364. doi: 10.1016/j.chemosphere.2016.02.056
|
70 |
ESSIEN E A, KAVAZ D, SOLOMON M M. Olive leaves extract mediated zero-valent iron nanoparticles:Synthesis,characterization,and assessment as adsorbent for nickel(Ⅱ) ions in aqueous medium[J]. Chemical Engineering Communications, 2018, 205(11):1568-1582. doi: 10.1080/00986445.2018.1461089
|
71 |
XIAO Zhengli, ZHANG Haidong, XU Yan,et al. Ultra-efficient removal of chromium from aqueous medium by biogenic iron based nanoparticles[J]. Separation and Purification Technology, 2017, 174:466-473. doi: 10.1016/j.seppur.2016.10.047
|
72 |
LUO Fang, CHEN Zuliang, MEGHARAJ M,et al. Biomolecules in grape leaf extract involved in one-step synthesis of iron-based nanoparticles[J]. RSC Adv., 2014, 4(96):53467-53474. doi: 10.1039/c4ra08808e
|
73 |
AHMED S F. Green approaches in synthesising nanomaterials for environmental nanobioremediation:Technological advancements,applications,benefits and challenges[J]. Environmental Research, 2022, 204:111967. doi: 10.1016/j.envres.2021.111967
|
74 |
TAVAKOLI A, SOHRABI M, KARGARI A. A review of methods for synthesis of nanostructured metals with emphasis on iron compounds[J]. Chemical Papers, 2007, 61(3):151-170. doi: 10.2478/s11696-007-0014-7
|
75 |
SCOTT T B, DICKINSON M, CRANE R A,et al. The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles[J]. Journal of Nanoparticle Research, 2010, 12(5):1765-1775. doi: 10.1007/s11051-009-9732-9
|
76 |
LIU Yueqiang, MAJETICH S A, TILTON R D,et al. TCE dechlorination rates,pathways,and efficiency of nanoscale iron particles with different properties[J]. Environmental Science & Technology, 2005, 39(5):1338-1345. doi: 10.1021/es049195r
|
77 |
LI Shaolin, YAN Weile, ZHANG Weixian. Solvent-free production of nanoscale zero-valent iron(nZVI) with precision milling[J]. Green Chemistry, 2009, 11(10):1618. doi: 10.1039/b913056j
|
78 |
KÖBER R, HOLLERT H, HORNBRUCH G,et al. Nanoscale zero-valent iron flakes for groundwater treatment[J]. Environmental Earth Sciences, 2014, 72(9):3339-3352. doi: 10.1007/s12665-014-3239-0
|
79 |
RIBAS D, PEŠKOVÁ K, JUBANY I,et al. High reactive nano zero-valent iron produced via wet milling through abrasion by alumina[J]. Chemical Engineering Journal, 2019, 366:235-245. doi: 10.1016/j.cej.2019.02.090
|
80 |
GAO Jie, WANG Wei, RONDINONE A,et al. Degradation of trichloroethene with a novel ball milled Fe-C nanocomposite[J]. Journal of Hazardous Materials, 2015, 300:443-450. doi: 10.1016/j.jhazmat.2015.07.038
|
81 |
GAO Mingxia. FeO/C anode materials of high capacity and cycle stability for lithium-ion batteries synthesized by carbothermal reduction[J]. Journal of Alloys and Compounds, 2013, 565:97-103. doi: 10.1016/j.jallcom.2013.03.012
|
82 |
|
|
LIU Yin, QIN Xiaoying, ZHANG Mingxu. Magnetoresistance of nanocrystalline γ-Ni-Fe alloy[J]. Chinese Journal of Materials Research, 2003, 17(1):19-24. doi: 10.3321/j.issn:1005-3093.2003.01.004
|
83 |
MORADI GHIASABADI S, RAYGAN S. In situ production of Fe-TiC nanocomposite by mechanical activation and heat treatment of the Fe 2O 3/TiO 2/C powder[J]. Journal of Materials Engineering and Performance, 2012, 21(11):2295-2302. doi: 10.1007/s11665-012-0185-4
|
84 |
AĞAOĞULLARı D, MADSEN S, ÖGÜT B,et al. Synthesis and characterization of graphite-encapsulated iron nanoparticles from ball milling-assisted low-pressure chemical vapor deposition[J]. Carbon, 2017, 124:170-179. doi: 10.1016/j.carbon.2017.08.043
|
85 |
|
|
ZHANG Zhongliang. Preparation,structure and magnetic properties of carbon-encapsulated magnetite,martensite,and iron nanoparticles by high energy ball milling method[D]. Changchun:Jilin University, 2020. doi: 10.1016/j.matchar.2020.110502
|
86 |
ZHANG Dongshi, GÖKCE B, BARCIKOWSKI S. Laser synthesis and processing of colloids:Fundamentals and applications[J]. Chemical Reviews, 2017, 117(5):3990-4103. doi: 10.1021/acs.chemrev.6b00468
|
87 |
彭楚才. 电爆炸法制备纳米粉体及其机理研究[D]. 南京:南京理工大学,2017.
|
|
PENG Chucai. Study on the preparation of nano-powders by electrical explosion of wire and its mechanism[D]. Nanjing:Nanjing University of Science and Technology,2017.
|
88 |
|
|
|
89 |
AMENDOLA V, RIELLO P, MENEGHETTI M. Magnetic nanoparticles of iron carbide,iron oxide,Iron@Iron oxide,and metal iron synthesized by laser ablation in organic solvents[J]. The Journal of Physical Chemistry C, 2011, 115(12):5140-5146. doi: 10.1021/jp109371m
|
90 |
LASEMI N, BOMATÍ MIGUEL O, LAHOZ R,et al. Laser-assisted synthesis of colloidal FeW x O y and Fe/Fe x O y nanoparticles in water and ethanol[J]. ChemPhysChem, 2018, 19(11):1414-1419. doi: 10.1002/cphc.201701214
|
91 |
LIN Qiyuan, NADARAJAH R, HOGLUND E,et al. Towards synthetic L10-FeNi:Detecting the absence of cubic symmetry in Laser-Ablated Fe-Ni nanoparticles[J]. Applied Surface Science, 2021, 567:150664. doi: 10.1016/j.apsusc.2021.150664
|
92 |
LIU Airong, LIU Jing, PAN Bingcai,et al. Formation of lepidocrocite( γ-FeOOH) from oxidation of nanoscale zero-valent iron(nZVI) in oxygenated water[J]. RSC Adv., 2014, 4(101):57377-57382. doi: 10.1039/c4ra08988j
|
93 |
HAN Ruoyu, WU Jiawei, QIU Aici. Optical emission behaviors of C,Al,Ti,Fe,Cu,Mo,Ag,Ta,and W wire explosions in gaseous media[J]. Physics Letters A, 2019, 383(16):1946-1954. doi: 10.1016/j.physleta.2019.03.029
|
94 |
HAN Ruoyu, WU Jiawei, QIU Aici,et al. Electrical explosions of Al,Ti,Fe,Ni,Cu,Nb,Mo,Ag,Ta,W,W-Re,Pt,and Au wires in water:A comparison study[J]. Journal of Applied Physics, 2018, 124(4):043302. doi: 10.1063/1.5030760
|
95 |
GAO Xin, YOKOTA N,ODA H,et al. One step preparation of Fe-FeO-graphene nanocomposite through pulsed wire discharge[J]. Crystals, 2018, 8(2):104. doi: 10.3390/cryst8020104
|
96 |
LÁZÁR K, VARGA L, KOVÁCS K V. Electric explosion of steel wires for production of nanoparticles:Reactions with the liquid media[J]. Journal of Alloys and Compounds, 2018, 763:759-770. doi: 10.1016/j.jallcom.2018.05.326
|
97 |
LERNER M I, BAKINA O V, PERVIKOV A V,et al. Structural-phase states of Fe-Cu and Fe-Ag bimetallic particles produced by electric explosion of two wires[J]. Russian Physics Journal, 2018, 61(1):14-18. doi: 10.1007/s11182-018-1359-9
|
98 |
YUN J Y, REDDY A S, YANG Sangsun,et al. Large-scale synthesis and CO oxidation study of FeCr alloy supported Pt nanocatalyst by electrical wire explosion process[J]. Catalysis Letters, 2012, 142(3):326-331. doi: 10.1007/s10562-012-0766-8
|
99 |
|
|
DING Songyi, SUN Bo, ZHUO Changfei. Experimental research on combustion of micro/nano iron powder based on particle swarm algorithm[J]. Science Technology and Engineering, 2022, 22(7):2709-2716. doi: 10.3969/j.issn.1671-1815.2022.07.021
|
100 |
DONG Haoran, LI Long, WANG Yaoyao,et al. Aging of zero-valent iron-based nanoparticles in aqueous environment and the consequent effects on their reactivity and toxicity[J]. Water Environment Research:A Research Publication of the Water Environment Federation, 2020, 92(5):646-661. doi: 10.1002/wer.1265
|
101 |
GILBERTSON L M, WENDER B A, ZIMMERMAN J B,et al. Coordinating modeling and experimental research of engineered nanomaterials to improve life cycle assessment studies[J]. Environmental Science:Nano, 2015, 2(6):669-682. doi: 10.1039/c5en00097a
|
102 |
VISENTIN C, TRENTIN A, BRAUN A,et al. Life cycle sustainability assessment:A systematic literature review through the application perspective,indicators,and methodologies[J]. Journal of Cleaner Production, 2020, 270:122509. doi: 10.1016/j.jclepro.2020.122509
|
103 |
VALDIVIA S, BACKES J G, TRAVERSO M,et al. Principles for the application of life cycle sustainability assessment[J]. The International Journal of Life Cycle Assessment, 2021, 26(9):1900-1905. doi: 10.1007/s11367-021-01958-2
|
104 |
董璟琦,张红振,雷秋霜,等. 污染场地修复生命周期评估程序与模型的研究进展[J]. 环境污染与防治,2016,38(12):89-95.
|
|
DONG Jingqi, ZHANG Hongzhen, LEI Qiushuang,et al. Review of LCA procedure and models for contaminated site remediation[J]. Environmental Pollution & Control,2016,38(12):89-95.
|
105 |
VISENTIN C, BRAUN A B, SILVA TRENTIN A W DA,et al. Sustainability assessment of nanoscale zerovalent iron production methods[J]. Environmental Engineering Science, 2022, 39(10):847-860. doi: 10.1089/ees.2021.0341
|
106 |
VISENTIN C, TRENTIN A, BRAUN A,et al. Life cycle sustainability assessment of the nanoscale zero-valent iron synthesis process for application in contaminated site remediation[J]. Environmental Pollution, 2021, 268:115915. doi: 10.1016/j.envpol.2020.115915
|
107 |
MARTINS F, MACHADO S, ALBERGARIA T,et al. LCA applied to nano scale zero valent iron synthesis[J]. The International Journal of Life Cycle Assessment, 2017, 22(5):707-714. doi: 10.1007/s11367-016-1258-7
|
108 |
|
109 |
RIDSDALE D R, NOBLE B F. Assessing sustainable remediation frameworks using sustainability principles[J]. Journal of Environmental Management, 2016, 184:36-44. doi: 10.1016/j.jenvman.2016.09.015
|
110 |
FAUZI R T, LAVOIE P, SORELLI L,et al. Exploring the current challenges and opportunities of life cycle sustainability assessment[J]. Sustainability, 2019, 11(3):636. doi: 10.3390/su11030636
|
111 |
JOSHI N, FILIP J, COKER V S,et al. Microbial reduction of natural Fe(Ⅲ) minerals;toward the sustainable production of functional magnetic nanoparticles[J]. Frontiers in Environmental Science, 2018, 6:127. doi: 10.3389/fenvs.2018.00127
|
112 |
PATIÑO-RUIZ D A, MERAMO-HURTADO S I, GONZÁLEZ-DELGADO Á D,et al. Environmental sustainability evaluation of iron oxide nanoparticles synthesized via green synthesis and the coprecipitation method:A comparative life cycle assessment study[J]. ACS Omega, 2021, 6(19):12410-12423. doi: 10.1021/acsomega.0c05246
|
113 |
KAMBANOU M L. Life cycle costing:Understanding how it is practised and its relationship to life cycle management:A case study[J]. Sustainability, 2020, 12(8):3252. doi: 10.3390/su12083252
|
114 |
ZHANG Xiang, ZHANG Lei, FUNG K,et al. Sustainable product design:A life-cycle approach[J]. Chemical Engineering Science, 2020, 217:115508. doi: 10.1016/j.ces.2020.115508
|
115 |
JENDRZEJ S, GÖKCE B, EPPLE M,et al. How size determines the value of gold:Economic aspects of wet chemical and laser-based metal colloid synthesis[J]. ChemPhysChem, 2017, 18(9):1012-1019. doi: 10.1002/cphc.201601139
|
116 |
HAASTER B, CIROTH A, FONTES J,et al. Development of a methodological framework for social life-cycle assessment of novel technologies[J]. The International Journal of Life Cycle Assessment, 2017, 22(3):423-440. doi: 10.1007/s11367-016-1162-1
|
117 |
GRUBERT E, ZAMAGNI A, MACOMBE C,et al. Rigor in social life cycle assessment:improving the scientific grounding of SLCA[J]. The International Journal of Life Cycle Assessment,2016,23(3):481-491.
|
118 |
VISENTIN C, SILVA TRENTIN A W DA, BRAUN A B,et al. Social life cycle assessment of the nanoscale zero-valent iron synthesis process for application in contaminated site remediation[J]. Environmental Science and Pollution Research International, 2022, 29(15):21603-21620. doi: 10.1007/s11356-021-17319-3
|
119 |
李彬,郭汉杰,郭靖,等. 基于最小Gibbs自由能原理的铁氧化物气固还原热力学研究[J]. 工程科学学报,2017,39(11):1653-1660.
|
|
LI Bin, GUO Hanjie, GUO Jing,et al. Thermodynamics of iron oxide gas-solid reduction based on the minimized Gibbs free energy principle[J]. Chinese Journal of Engineering,2017,39(11):1653-1660.
|
120 |
CHAI Xicui, YUE Qiang, ZHANG Yujie,et al. Analysis of energy consumption and its influencing factors in hydrogen metallurgy process[J]. Steel Research International, 2022, 93(7):2100730. doi: 10.1002/srin.202100730
|
121 |
LI Bingbing, ZHANG Hongchao, YUAN C. Thermodynamic analysis of titanium dioxide nanotube synthesis process for sustainability improvement[C]//Proceedings of ASME 2015 International Manufacturing Science and Engineering Conference. Charlotte,North Carolina,USA, 2015. doi: 10.1115/msec2015-9229
|
122 |
CHOI H, WANG Lin. A quantitative study of grinding characteristics on particle size and grinding consumption energy by stirred ball mill[J]. Korean Journal of Metals and Materials, 2007, 17(10):532-537. doi: 10.3740/mrsk.2007.17.10.532
|
123 |
BIAN Xiaolei. Effect of lifters and mill speed on particle behaviour,torque,and power consumption of a tumbling ball mill:Experimental study and DEM simulation[J]. Minerals Engineering, 2017, 105:22-35. doi: 10.1016/j.mineng.2016.12.014
|
124 |
ZHAO Xuzhe, SHAW L. Modeling and analysis of high-energy ball milling through attritors[J]. Metallurgical and Materials Transactions A, 2017, 48(9):4324-4333. doi: 10.1007/s11661-017-4195-6
|
125 |
吕利平,李航,李伟,等. 碳中和在污水处理厂的实践途径与应用进展[J]. 工业水处理,2022,42(11):1-6.
|
|
Liping LÜ, LI Hang, LI Wei,et al. Practice approach and application progress of carbon neutrality in wastewater treatment plant[J]. Industrial Water Treatment,2022,42(11):1-6.
|