1 |
杨杨阳,丁千,周子振,等. 基于文献计量学的畜禽养殖废水处理研究现状及发展趋势[J]. 环境工程技术学报,2024,14(2):651-662.
|
|
YANG Yangyang, DING Qian, ZHOU Zizhen,et al. Research status and development trend of livestock and poultry wastewater treatment based on bibliometrics[J]. Journal of Environmental Engineering Technology,2024,14(2):651-662.
|
2 |
HU Yuanan, CHENG Hefa, TAO Shu. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation[J]. Environment International, 2017, 107:111-130. doi: 10.1016/j.envint.2017.07.003
|
3 |
WANG Yuying, MA Jiaying, CHU Huaqiang,et al. Advances in microalgae-based livestock wastewater treatment:Mechanisms of pollutants removal,effects of inhibitory components and enhancement strategies[J]. Chemical Engineering Journal, 2024, 483:149222. doi: 10.1016/j.cej.2024.149222
|
4 |
DE OLIVEIRA J F,FIA R, FIA F R L,et al. Principal component analysis as a criterion for monitoring variable organic load of swine wastewater in integrated biological reactors UASB,SABF and HSSF-CW[J]. Journal of Environmental Management, 2020, 262:110386. doi: 10.1016/j.jenvman.2020.110386
|
5 |
|
|
HJ 497—2009 Technical specifications for pollution treatment projects of livestock and poultry farms [S]. doi: 10.14310/horm.2002.1225
|
6 |
VAISHNAV S, SAINI T, CHAUHAN A,et al. Livestock and poultry farm wastewater treatment and its valorization for generating value-added products:Recent updates and way forward[J]. Bioresource Technology, 2023, 382:129170. doi: 10.1016/j.biortech.2023.129170
|
7 |
ARTUKMETOV Z, NASIROV B, ALIEV J,et al. Composition of waste water from poultry factories and their suitability for irrigation of agricultural crops:As an example of Tashkent Province,Uzbekistan[J]. E3S Web of Conferences, 2021, 244:01018. doi: 10.1051/e3sconf/202124401018
|
8 |
DANESHVAR E, ZARRINMEHR M J, KOUTRA E,et al. Sequential cultivation of microalgae in raw and recycled dairy wastewater:Microalgal growth,wastewater treatment and biochemical composition[J]. Bioresource Technology, 2019, 273:556-564. doi: 10.1016/j.biortech.2018.11.059
|
9 |
|
|
LU Xin, LUO Jia, GAO Yan,et al. A review in ecotoxic effect of antibiotics and heavy metals co-contamination in livestock and poultry breeding wastewater and its remediation[J]. Jiangsu Journal of Agricultural Sciences, 2014, 30(3):671-681. doi: 10.3969/j.issn.1000-4440.2014.03.036
|
10 |
ZOU Huiyun, ZHOU Ziyu, XIA Huiyu,et al. Characterization of chromosome-mediated Bla OXA-894 in Shewanella xiamenensis isolated from pig wastewater[J]. International Journal of Environmental Research and Public Health, 2019, 16(19):3768. doi: 10.3390/ijerph16193768
|
11 |
MATASSA S, BATSTONE D J, HÜLSEN T,et al. Can direct conversion of used nitrogen to new feed and protein help feed the world?[J]. Environmental Science & Technology, 2015, 49(9):5247-5254. doi: 10.1021/es505432w
|
12 |
MEHTA C M, KHUNJAR W O, NGUYEN V,et al. Technologies to recover nutrients from waste streams:A critical review[J]. Critical Reviews in Environmental Science and Technology, 2015, 45(4):385-427. doi: 10.1080/10643389.2013.866621
|
13 |
BATSTONE D J, HÜLSEN T, MEHTA C M,et al. Platforms for energy and nutrient recovery from domestic wastewater:A review[J]. Chemosphere, 2015, 140:2-11. doi: 10.1016/j.chemosphere.2014.10.021
|
14 |
HÜLSEN T, BARRY E M, LU Yang,et al. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor[J]. Water Research, 2016, 100:486-495. doi: 10.1016/j.watres.2016.04.061
|
15 |
SEPÚLVEDA-MUÑOZ C A, DE GODOS I, MUÑOZ R. Wastewater treatment using photosynthetic microorganisms[J]. Symmetry, 2023, 15(2):525. doi: 10.3390/sym15020525
|
16 |
ZHAO Haiyan, WANG Ziqian, LIANG Yonghong,et al. Adsorptive decontamination of antibiotics from livestock wastewater by using alkaline-modified biochar[J]. Environmental Research, 2023, 226:115676. doi: 10.1016/j.envres.2023.115676
|
17 |
BAGHERI M, MIRBAGHERI S A. Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater[J]. Bioresource Technology, 2018, 258:318-334. doi: 10.1016/j.biortech.2018.03.026
|
18 |
Yu MEN, LI Zifu, ZHU Lixin,et al. New insights into membrane fouling during direct membrane filtration of municipal wastewater and fouling control with mechanical strategies[J]. Science of the Total Environment, 2023, 869:161775. doi: 10.1016/j.scitotenv.2023.161775
|
19 |
IGWEGBE C A, ONUKWULI O D, IGHALO J O,et al. Electrocoagulation-flocculation of aquaculture effluent using hybrid iron and aluminium electrodes:A comparative study[J]. Chemical Engineering Journal Advances, 2021, 6:100107. doi: 10.1016/j.ceja.2021.100107
|
20 |
XU Jianping, QIU Tianlong, CHEN Fudi,et al. Construction and application of an electrocoagulation and filtration linkage control system in a recirculating aquaculture system[J]. Journal of Water Process Engineering, 2021, 44:102379. doi: 10.1016/j.jwpe.2021.102379
|
21 |
MOLLAH M Y A, MORKOVSKY P, GOMES J A G,et al. Fundamentals,present and future perspectives of electrocoagulation[J]. Journal of Hazardous Materials, 2004, 114(1/2/3):199-210. doi: 10.1016/j.jhazmat.2004.08.009
|
22 |
BHATT P, HUANG J Y, BROWN P,et al. Electrochemical treatment of aquaculture wastewater effluent and optimization of the parameters using response surface methodology[J]. Environmental Pollution, 2023, 331:121864. doi: 10.1016/j.envpol.2023.121864
|
23 |
CHENG Mengqi, LI Xiao, JIAO Xiangxiang,et al. A critical review on iron-enhanced constructed wetland system:Mechanisms and application scope[J]. Water,Air,& Soil Pollution, 2022, 233(12):524. doi: 10.1007/s11270-022-05985-z
|
24 |
HÜLSEN T, STEGMAN S, BATSTONE D J,et al. Naturally illuminated photobioreactors for resource recovery from piggery and chicken-processing wastewaters utilising purple phototrophic bacteria[J]. Water Research, 2022, 214:118194. doi: 10.1016/j.watres.2022.118194
|
25 |
DE GODOS I, VARGAS V A, BLANCO S,et al. A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation[J]. Bioresource Technology, 2010, 101(14):5150-5158. doi: 10.1016/j.biortech.2010.02.010
|
26 |
MARÍN D, POSADAS E, GARCÍA D,et al. Assessing the potential of purple phototrophic bacteria for the simultaneous treatment of piggery wastewater and upgrading of biogas[J]. Bioresource Technology, 2019, 281:10-17. doi: 10.1016/j.biortech.2019.02.073
|
27 |
WANG Meng, YANG Han, ERGAS S J,et al. A novel shortcut nitrogen removal process using an algal-bacterial consortium in a photo-sequencing batch reactor(PSBR)[J]. Water Research, 2015, 87:38-48. doi: 10.1016/j.watres.2015.09.016
|
28 |
CHEN C Y, KUO Enwei, NAGARAJAN D,et al. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production[J]. Bioresource Technology, 2020, 302:122814. doi: 10.1016/j.biortech.2020.122814
|
29 |
|
|
SU Xudong. Study on influencing factors and effects of inorganic carbon fixation by mixed microalgae[D]. Harbin:Harbin Engineering University, 2012. doi: 10.1016/j.chemosphere.2012.04.011
|
30 |
ALLOUL A, WILLE M, LUCENTI P,et al. Purple bacteria as added-value protein ingredient in shrimp feed: Penaeus vannamei growth performance,and tolerance against Vibrio and ammonia stress[J]. Aquaculture, 2021, 530:735788. doi: 10.1016/j.aquaculture.2020.735788
|
31 |
CHEAH W Y, LING T C, SHOW P L,et al. Cultivation in wastewaters for energy:A microalgae platform[J]. Applied Energy, 2016, 179:609-625. doi: 10.1016/j.apenergy.2016.07.015
|
32 |
LU Qian, LI Huankai, XIAO Yu,et al. A state-of-the-art review on the synthetic mechanisms,production technologies,and practical application of polyunsaturated fatty acids from microalgae[J]. Algal Research, 2021, 55:102281. doi: 10.1016/j.algal.2021.102281
|
33 |
LU Qian, LI Huankai, ZOU Yao,et al. Astaxanthin as a microalgal metabolite for aquaculture:A review on the synthetic mechanisms,production techniques,and practical application[J]. Algal Research, 2021, 54:102178. doi: 10.1016/j.algal.2020.102178
|
34 |
MARKOU G, WANG Liang, YE Jianfeng,et al. Using agro-industrial wastes for the cultivation of microalgae and duckweeds:Contamination risks and biomass safety concerns[J]. Biotechnology Advances, 2018, 36(4):1238-1254. doi: 10.1016/j.biotechadv.2018.04.003
|
35 |
BERTLING K, HURSE T J, KAPPLER U,et al. Lasers:An effective artificial source of radiation for the cultivation of anoxygenic photosynthetic bacteria[J]. Biotechnology and Bioengineering,2006,94(2):337-345.
|
36 |
STRUK M, SEPÚLVEDA-MUÑOZ C A, KUSHKEVYCH I,et al. Photoautotrophic removal of hydrogen sulfide from biogas using purple and green sulfur bacteria[J]. Journal of Hazardous Materials, 2023, 443:130337. doi: 10.1016/j.jhazmat.2022.130337
|
37 |
HUNTER C N, DALDAL F, THURNAUER M C,et al. The purple phototrophic bacteria[M]. Dordrecht:Springer Netherlands, 2009:31-55. doi: 10.1007/978-1-4020-8815-5
|
38 |
LARIMER F W, CHAIN P, HAUSER L,et al. Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris [J]. Nature Biotechnology, 2004, 22:55-61. doi: 10.1038/nbt923
|
39 |
LU Haifeng, ZHANG Guangming, ZHENG Ziqiao,et al. Bio-conversion of photosynthetic bacteria from non-toxic wastewater to realize wastewater treatment and bioresource recovery:A review[J]. Bioresource Technology, 2019, 278:383-399. doi: 10.1016/j.biortech.2019.01.070
|
40 |
POSTEN C, SCHAUB G. Microalgae and terrestrial biomass as source for fuels:A process view[J]. Journal of Biotechnology, 2009, 142(1):64-69. doi: 10.1016/j.jbiotec.2009.03.015
|
41 |
|
42 |
MARSCHALL E, JOGLER M, HESSGE U,et al. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea[J]. Environmental Microbiology, 2010, 12(5):1348-1362. doi: 10.1111/j.1462-2920.2010.02178.x
|
43 |
JIRASANSAWAT K, CHIEMCHAISRI W, CHIEMCHAISRI C. Enhancement of sulfide removal and sulfur recovery in piggery wastewater via lighting-anaerobic digestion with bioaugmentation of phototrophic green sulfur bacteria[J]. Environmental Science and Pollution Research, 2024, 31(9):13414-13425. doi: 10.1007/s11356-024-31920-2
|
44 |
WANG Yue, GUO Wanqian, YEN H W,et al. Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production[J]. Bioresource Technology, 2015, 198:619-625. doi: 10.1016/j.biortech.2015.09.067
|
45 |
CHENG D L, NGO H H, GUO W S,et al. Microalgae biomass from swine wastewater and its conversion to bioenergy[J]. Bioresource Technology, 2019, 275:109-122. doi: 10.1016/j.biortech.2018.12.019
|
46 |
ZHANG Qi, YU Zhigang, ZHU Liandong,et al. Vertical-algal-biofilm enhanced raceway pond for cost-effective wastewater treatment and value-added products production[J]. Water Research, 2018, 139:144-157. doi: 10.1016/j.watres.2018.03.076
|
47 |
WANG Jilin, HE Ronghuan. Formation and evaluation of interpenetrating networks of anion exchange membranes based on quaternized chitosan and copolymer poly(acrylamide)/polystyrene[J]. Solid State Ionics, 2015, 278:49-57. doi: 10.1016/j.ssi.2015.05.017
|
48 |
MOU Yiwen, LIU Na, LU Tianxiang,et al. The effects of carbon nitrogen ratio and salinity on the treatment of swine digestion effluent simultaneously producing bioenergy by microalgae biofilm[J]. Chemosphere, 2023, 339:139694. doi: 10.1016/j.chemosphere.2023.139694
|
49 |
HOH D, WATSON S, KAN E. Algal biofilm reactors for integrated wastewater treatment and biofuel production:A review[J]. Chemical Engineering Journal, 2016, 287:466-473. doi: 10.1016/j.cej.2015.11.062
|
50 |
HU Yingying, XIAO Yunxiang, LIAO Kang,et al. Development of microalgal biofilm for wastewater remediation:From mechanism to practical application[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(11):2993-3008. doi: 10.1002/jctb.6850
|
51 |
ZHENG Yaping, HUANG Yun, XIA Ao,et al. A rapid inoculation method for microalgae biofilm cultivation based on microalgae-microalgae co-flocculation and zeta-potential adjustment[J]. Bioresource Technology, 2019, 278:272-278. doi: 10.1016/j.biortech.2019.01.083
|
52 |
LU Haifeng, ZHANG Guangming, DONG Shan. Quantitative study of PNSB energy metabolism in degrading pollutants under weak light-micro oxygen condition[J]. Bioresource Technology, 2011, 102(8):4968-4973. doi: 10.1016/j.biortech.2011.01.027
|
53 |
MEHROTRA S, KIRAN KUMAR V, MAN MOHAN K,et al. Bioelectrogenesis from ceramic membrane-based algal-microbial fuel cells treating dairy industry wastewater[J]. Sustainable Energy Technologies and Assessments, 2021, 48:101653. doi: 10.1016/j.seta.2021.101653
|
54 |
WU Xiaodan, CEN Qingjing, ADDY M,et al. A novel algal biofilm photobioreactor for efficient hog manure wastewater utilization and treatment[J]. Bioresource Technology, 2019, 292:121925. doi: 10.1016/j.biortech.2019.121925
|
55 |
ELSHOBARY M E, ZABED H M, YUN Junhua,et al. Recent insights into microalgae-assisted microbial fuel cells for generating sustainable bioelectricity[J]. International Journal of Hydrogen Energy, 2021, 46(4):3135-3159. doi: 10.1016/j.ijhydene.2020.06.251
|
56 |
HOU Qingjie, PEI Haiyan, HU Wenrong,et al. Mutual facilitations of food waste treatment,microbial fuel cell bioelectricity generation and Chlorella vulgaris lipid production[J]. Bioresource Technology, 2016, 203:50-55. doi: 10.1016/j.biortech.2015.12.049
|
57 |
龙朋成. 连续流小球藻生物阴极型MFC系统处理源分离养猪废水研究[D]. 西安:长安大学,2019.
|
|
LONG Pengcheng. Study on treatment of pig wastewater by continuous flow Chlorella biocathode MFC system[D]. Xi’an:Changan University,2019.
|
58 |
李彩林,刘扬,李月. 菌藻微生物燃料电池处理模拟养殖废水的研究[J]. 青海大学学报,2023,41(6):1-8.
|
|
LI Cailin, LIU Yang, LI Yue. Study on the treatment of the simulated aquaculture wastewater using bacterial-algal microbial fuel cells[J]. Journal of Qinghai University,2023,41(6):1-8.
|
59 |
王佳璇,段嘉琪,刘喆,等. 藻类微生物燃料电池的构型发展及应用现状[J]. 环境科学与技术,2023,46(4):61-71.
|
|
WANG Jiaxuan, DUAN Jiaqi, LIU Zhe,et al. Configuration development and application status of algae microbial fuel cells[J]. Environmental Science & Technology,2023,46(4):61-71.
|
60 |
AMIN S A, HMELO L R, VAN TOL H M,et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria[J]. Nature, 2015, 522:98-101. doi: 10.1038/nature14488
|
61 |
HÜLSEN T, BATSTONE D J, KELLER J. Phototrophic bacteria for nutrient recovery from domestic wastewater[J]. Water Research, 2014, 50:18-26. doi: 10.1016/j.watres.2013.10.051
|
62 |
张亚斌,党腾飞,李志国,等. 菌藻共生技术在畜禽养殖沼液资源化治理的研究进展[J]. 工业水处理,2024,44(10):18-25.
|
|
ZHANG Yabin, DANG Tengfei, LI Zhiguo,et al. Advancements in research on bacteria-algae symbiosis technology for treating biogas slurry in livestock and poultry breeding[J]. Industrial Water Treatment,2024,44(10):18-25.
|
63 |
|
|
CHEN Hengyuan, FANG Yezi, ZHENG Baohua,et al. Study on the mechanism of a biofilm reactor based on microalgal bacterial consortia for piggery wastewater treatment[J]. Journal of Biology,2023-12-02. doi: 10.1201/9780429058257-2
|
64 |
WANG Shikai, YANG Kunxiao, ZHU Yurong,et al. One-step co-cultivation and flocculation of microalgae with filamentous fungi to valorize starch wastewater into high-value biomass[J]. Bioresource Technology, 2022, 361:127625. doi: 10.1016/j.biortech.2022.127625
|
65 |
WU Qirui, LI Shuangxi, WANG Hanzhi,et al. Construction of an efficient microalgal-fungal co-cultivation system for swine wastewater treatment:Nutrients removal and extracellular polymeric substances(EPS)-mediated aggregated structure formation[J]. Chemical Engineering Journal, 2023, 476:146690. doi: 10.1016/j.cej.2023.146690
|
66 |
CRAGGS R, SUTHERLAND D, CAMPBELL H. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production[J]. Journal of Applied Phycology, 2012, 24(3):329-337. doi: 10.1007/s10811-012-9810-8
|
67 |
ZHOU Wenguang, CHENG Yanling, LI Yun,et al. Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment[J]. Applied Biochemistry and Biotechnology, 2012, 167(2):214-228. doi: 10.1007/s12010-012-9667-y
|
68 |
CHANG Yiling, NAGARAJAN D, CHEN J H,et al. Microalgae-bacteria consortia for the treatment of raw dairy manure wastewater using a novel two-stage process:Process optimization and bacterial community analysis[J]. Chemical Engineering Journal, 2023, 473:145388. doi: 10.1016/j.cej.2023.145388
|
69 |
JOHNSON M B, WEN Zhiyou. Development of an attached microalgal growth system for biofuel production[J]. Applied Microbiology and Biotechnology, 2010, 85(3):525-534. doi: 10.1007/s00253-009-2133-2
|
70 |
HÜLSEN T, HSIEH K, TAIT S,et al. White and infrared light continuous photobioreactors for resource recovery from poultry processing wastewater:A comparison[J]. Water Research, 2018, 144:665-676. doi: 10.1016/j.watres.2018.07.040
|
71 |
CAPSON-TOJO G, BATSTONE D J, GRASSINO M,et al. Purple phototrophic bacteria for resource recovery:Challenges and opportunities[J]. Biotechnology Advances, 2020, 43:107567. doi: 10.1016/j.biotechadv.2020.107567
|
72 |
SADVAKASOVA A K, KOSSALBAYEV B D, BAUENOVA M O,et al. Microalgae as a key tool in achieving carbon neutrality for bioproduct production[J]. Algal Research, 2023, 72:103096. doi: 10.1016/j.algal.2023.103096
|
73 |
AHN Y, PARK S, JI M K,et al. Biodiesel production potential of microalgae,cultivated in acid mine drainage and livestock wastewater[J]. Journal of Environmental Management, 2022, 314:115031. doi: 10.1016/j.jenvman.2022.115031
|
74 |
王宜迪,任丽,孙浩程,等. 湿法微藻生物柴油研究进展[J]. 当代化工,2024,53(1):227-232.
|
|
WANG Yidi, REN Li, SUN Haocheng,et al. Research progress in biodiesel production from wet microalgae[J]. Contemporary Chemical Industry,2024,53(1):227-232.
|
75 |
KANG S,HEO S, LEE J H. Techno-economic analysis of microalgae-based lipid production:Considering influences of microalgal species[J]. Industrial & Engineering Chemistry Research, 2019, 58(2):944-955. doi: 10.1021/acs.iecr.8b03999
|
76 |
莫壮洪,朱俊英,荣峻峰,等. 微藻生物固碳技术在碳中和中的应用及潜在价值[J]. 石油炼制与化工,2024,55(1):98-111.
|
|
MO Zhuanghong, ZHU Junying, RONG Junfeng,et al. Application and potential value of microalgae bio-carbon fixation technology in carbon neutrality[J]. Petroleum Processing and Petrochemicals,2024,55(1):98-111.
|
77 |
WANG Yi, ZHOU Xuehua, LU Chaoyang,et al. Screening and optimization of mixed culture of photosynthetic bacteria and its characteristics of hydrogen production using cattle manure wastewater[J]. Journal of Biobased Materials and Bioenergy, 2015, 9(1):82-87. doi: 10.1166/jbmb.2015.1488
|
78 |
CAO Kefan, ZHI Ran, ZHANG Guangming. Photosynthetic bacteria wastewater treatment with the production of value-added products:A review[J]. Bioresource Technology, 2020, 299:122648. doi: 10.1016/j.biortech.2019.122648
|
79 |
刘雨雪. 藻菌生物膜处理水产养殖废水及其饲料化潜力研究[D]. 武汉:华中科技大学,2021.
|
|
LIU Yuxue. Study on treatment of aquaculture wastewater by algae biofilm and its feed potential[D]. Wuhan:Huazhong University of Science and Technology,2021.
|
80 |
WIN T T, BARONE G D, SECUNDO F,et al. Algal biofertilizers and plant growth stimulants for sustainable agriculture[J]. Industrial Biotechnology, 2018, 14(4):203-211. doi: 10.1089/ind.2018.0010
|
81 |
HIGUCHI-TAKEUCHI M, NUMATA K. Acetate-inducing metabolic states enhance polyhydroxyalkanoate production in marine purple non-sulfur bacteria under aerobic conditions[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7:118. doi: 10.3389/fbioe.2019.00118
|
82 |
COSTA S S, MIRANDA A L, DE MORAIS M G,et al. Microalgae as source of polyhydroxyalkanoates(PHAs):A review[J]. International Journal of Biological Macromolecules, 2019, 131:536-547. doi: 10.1016/j.ijbiomac.2019.03.099
|