1 |
MOHAMAD SAID K A, ISMAIL A F, ABDUL KARIM Z,et al. A review of technologies for the phenolic compounds recovery and phenol removal from wastewater[J]. Process Safety and Environmental Protection, 2021, 151:257-289. doi: 10.1016/j.psep.2021.05.015
|
2 |
SAPUTERA W H, PUTRIE A S, ESMAILPOUR A A,et al. Technology advances in phenol removals:Current progress and future perspectives[J]. Catalysts, 2021, 11(8):998. doi: 10.3390/catal11080998
|
3 |
CORDOVA VILLEGAS L G, MASHHADI N, CHEN Miao,et al. A short review of techniques for phenol removal from wastewater[J]. Current Pollution Reports, 2016, 2(3):157-167. doi: 10.1007/s40726-016-0035-3
|
4 |
LI Dong, STANFORD B, DICKENSON E,et al. Effect of advanced oxidation on N-nitrosodimethylamine(NDMA) formation and microbial ecology during pilot-scale biological activated carbon filtration[J]. Water Research, 2017, 113:160-170. doi: 10.1016/j.watres.2017.02.004
|
5 |
CAI Q Q, WU M Y, LI R,et al. Potential of combined advanced oxidation:Biological process for cost-effective organic matters removal in reverse osmosis concentrate produced from industrial wastewater reclamation:Screening of AOP pre-treatment technologies[J]. Chemical Engineering Journal, 2020, 389:123419. doi: 10.1016/j.cej.2019.123419
|
6 |
PRIYADARSHINI M,DAS I, GHANGREKAR M M,et al. Advanced oxidation processes:Performance,advantages,and scale-up of emerging technologies[J]. Journal of Environmental Management, 2022, 316:115295. doi: 10.1016/j.jenvman.2022.115295
|
7 |
PELALAK R, ALIZADEH R, GHARESHABANI E. Enhanced heterogeneous catalytic ozonation of pharmaceutical pollutants using a novel nanostructure of iron-based mineral prepared via plasma technology:A comparative study[J]. Journal of Hazardous Materials, 2020, 392:122269. doi: 10.1016/j.jhazmat.2020.122269
|
8 |
MA Rui, LIU Guangmin, FENG Sihui,et al. Optimization and effects of catalytic ozonation of actual phenolic wastewater by CuO/Al2O3 [J]. China Petroleum Processing & Petrochemical Technology,2019,21(3):74-80.
|
9 |
|
10 |
|
|
WEI Dan, CHEN Jie, SUN Xun. Study on heterogeneous catalytic ozonation for removalof COD and ammonia nitrogen[J]. Industrial Water Treatment, 2022, 42(12):136-141. doi: 10.19965/j.cnki.iwt.2022-0119
|
11 |
ISSAKA E, AMU-DARKO J N O, YAKUBU S,et al. Advanced catalytic ozonation for degradation of pharmaceutical pollutants:A review[J]. Chemosphere, 2022, 289:133208. doi: 10.1016/j.chemosphere.2021.133208
|
12 |
|
|
LI Zhenbang, YAN Bingchuan, WANG Quanyong,et al. Research progress of ozone catalytic oxidation and coupling process for industrial wastewater treatment[J]. Industrial Water Treatment, 2022, 42(9):56-63. doi: 10.19965/j.cnki.iwt.2021-0783
|
13 |
WANG Jianlong, CHEN Hai. Catalytic ozonation for water and wastewater treatment:Recent advances and perspective[J]. Science of the Total Environment, 2020, 704:135249. doi: 10.1016/j.scitotenv.2019.135249
|
14 |
李振邦,张欢,王全勇,等. 多元负载型催化剂的制备及臭氧催化氧化性能[J].工业水处理,2022,42(1):148-153.
|
|
LI Zhenbang, ZHANG Huan, WANG Quanyong,et al. Preparation and ozonation performance of multicomponent supported catalysts[J]. Industrial Water Treatment,2022,42(1):148-153.
|
15 |
LEE Wen Jie, BAO Yueping, GUAN Chaoting,et al. Ce/TiO x -functionalized catalytic ceramic membrane for hybrid catalytic ozonation-membrane filtration process:Fabrication,characterization and performance evaluation[J]. Chemical Engineering Journal, 2021, 410:128307. doi: 10.1016/j.cej.2020.128307
|
16 |
WANG Yujue, YU Gang. Challenges and pitfalls in the investigation of the catalytic ozonation mechanism:A critical review[J]. Journal of Hazardous Materials, 2022, 436:129157. doi: 10.1016/j.jhazmat.2022.129157
|
17 |
ALAMEDDINE M, SIRAKI A, TONOYAN L,et al. Treatment of a mixture of pharmaceuticals,herbicides and perfluorinated compounds by powdered activated carbon and ozone:Synergy,catalysis and insights into non-free OH contingent mechanisms[J]. Science of the Total Environment, 2021, 777:146138. doi: 10.1016/j.scitotenv.2021.146138
|
18 |
WEI Xingyue, SHAO Shengjuan, DING Xin,et al. Degradation of phenol with heterogeneous catalytic ozonation enhanced by high gravity technology[J]. Journal of Cleaner Production, 2020, 248:119179. doi: 10.1016/j.jclepro.2019.119179
|
19 |
LI Yu, XU Jie, QIAN Mengqian,et al. The role of surface hydroxyl concentration on calcinated alumina in catalytic ozonation[J]. Environmental Science and Pollution Research, 2019, 26(15):15373-15380. doi: 10.1007/s11356-019-04909-5
|
20 |
WANG Ye, YANG Wenzhong, YIN Xiaoshuang,et al. The role of Mn-doping for catalytic ozonation of phenol using Mn/ γ-Al 2O 3 nanocatalyst:Performance and mechanism[J]. Journal of Environmental Chemical Engineering, 2016, 4(3):3415-3425. doi: 10.1016/j.jece.2016.07.016
|
21 |
ZHAO Hui, DONG Yuming, WANG Guangli,et al. Novel magnetically separable nanomaterials for heterogeneous catalytic ozonation of phenol pollutant:NiFe 2O 4 and their performances[J]. Chemical Engineering Journal, 2013, 219:295-302. doi: 10.1016/j.cej.2013.01.019
|
22 |
QU Zhengjun, XU Xiaoshen, REN Hongfei,et al. Effective mineralization of p-nitrophenol in water by heterogeneous catalytic ozonation using Ce-loaded sepiolite catalyst[J]. Journal of Environmental Chemical Engineering, 2022, 10(4):108185. doi: 10.1016/j.jece.2022.108185
|
23 |
TAN Xiuqin, WAN Yifeng, HUANG Yajing,et al. Three-dimensional MnO 2 porous hollow microspheres for enhanced activity as ozonation catalysts in degradation of bisphenol A[J]. Journal of Hazardous Materials, 2017, 321:162-172. doi: 10.1016/j.jhazmat.2016.09.013
|
24 |
CHEN Hua, FANG Cunxia, GAO Xingmin,et al. Sintering- and oxidation-resistant ultrasmall Cu(Ⅰ)/(Ⅱ) oxides supported on defect-rich mesoporous alumina microspheres boosting catalytic ozonation[J]. Journal of Colloid and Interface Science, 2021, 581:964-978. doi: 10.1016/j.jcis.2020.09.002
|
25 |
ZHANG Jianlin, ZHUANG Tao, LIU Shanjun,et al. Catalytic ozonation of phenol enhanced by mesoporous MnO 2 prepared through nanocasting method with SBA-15 as template[J]. Journal of Environmental Chemical Engineering, 2020, 8(4):103967. doi: 10.1016/j.jece.2020.103967
|
26 |
HE Yuan, WANG Liangjie, CHEN Zhan,et al. Catalytic ozonation for metoprolol and ibuprofen removal over different MnO 2 nanocrystals:Efficiency,transformation and mechanism[J]. Science of the Total Environment, 2021, 785:147328. doi: 10.1016/j.scitotenv.2021.147328
|
27 |
NAWAZ F, CAO Hongbin, XIE Yongbing,et al. Selection of active phase of MnO 2 for catalytic ozonation of 4-nitrophenol[J]. Chemosphere, 2017, 168:1457-1466. doi: 10.1016/j.chemosphere.2016.11.138
|
28 |
HUANG Xiaoqiao, CUI Wenyao, YU Jianying,et al. Preparation of mesoporous MnO 2 catalysts with different morphologies for catalytic ozonation of organic compounds[J]. Catalysis Letters, 2022, 152(5):1441-1450. doi: 10.1007/s10562-021-03745-y
|
29 |
WANG Jianlong, BAI Zhiyong. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater[J]. Chemical Engineering Journal, 2017, 312:79-98. doi: 10.1016/j.cej.2016.11.118
|
30 |
XIONG Zhaokun, LAI Bo, YUAN Yue,et al. Degradation of p-nitrophenol(PNP) in aqueous solution by a micro-size Fe 0/O 3 process(mFe 0/O 3):Optimization,kinetic,performance and mechanism[J]. Chemical Engineering Journal, 2016, 302:137-145. doi: 10.1016/j.cej.2016.05.052
|
31 |
王勇,杜明辉,张宁,等. α-Fe2O3催化臭氧氧化处理苯酚废水的效果及机理[J]. 环境科学研究,2022,35(8):1818-1826.
|
|
WANG Yong, DU Minghui, ZHANG Ning,et al. Degradation effect and mechanism of phenol wastewater by α-Fe2O3 catalytic ozone oxidation[J]. Research of Environmental Sciences,2022,35(8):1818-1826.
|
32 |
LI Yu, WU Luchao, WANG Yun,et al. γ-Al 2O 3 doped with cerium to enhance electron transfer in catalytic ozonation of phenol[J]. Journal of Water Process Engineering, 2020, 36:101313. doi: 10.1016/j.jwpe.2020.101313
|
33 |
DAI Qiguang, WANG Wei, WANG Xingyi,et al. Sandwich-structured CeO 2@ZSM-5 hybrid composites for catalytic oxidation of 1,2-dichloroethane:An integrated solution to coking and chlorine poisoning deactivation[J]. Applied Catalysis B:Environmental, 2017, 203:31-42. doi: 10.1016/j.apcatb.2016.10.009
|
34 |
AFZAL S, QUAN Xie, LU Sen. Catalytic performance and an insight into the mechanism of CeO 2 nanocrystals with different exposed facets in catalytic ozonation of p-nitrophenol[J]. Applied Catalysis B:Environmental, 2019, 248:526-537. doi: 10.1016/j.apcatb.2019.02.010
|
35 |
GUZMÁN I C, RODRÍGUEZ J L, POZNYAK T,et al. Catalytic ozonation of 4-chlorophenol and 4- phenolsulfonic acid by CeO 2 films[J]. Catalysis Communications, 2020, 133:105827. doi: 10.1016/j.catcom.2019.105827
|
36 |
NAGAPPA B, CHANDRAPPA G T. Mesoporous nanocrystalline magnesium oxide for environmental remediation[J]. Microporous and Mesoporous Materials, 2007, 106(1/2/3):212-218. doi: 10.1016/j.micromeso.2007.02.052
|
37 |
DU Lei, LI Pengyang, GAO Wenqiang,et al. Enhancement degradation of formaldehyde by MgO/ γ-Al 2O 3 catalyzed O 3/H 2O 2 in a rotating packed bed[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 118:29-37. doi: 10.1016/j.jtice.2021.01.011
|
38 |
WANG Bing, XIONG Xingaoyuan, REN Hongyang,et al. Preparation of MgO nanocrystals and catalytic mechanism on phenol ozonation[J]. RSC Advances, 2017, 7(69):43464-43473. doi: 10.1039/c7ra07553g
|
39 |
CHEN Jun, TIAN Shuanghong, LU Jiang,et al. Catalytic performance of MgO with different exposed crystal facets towards the ozonation of 4-chlorophenol[J]. Applied Catalysis A:General, 2015, 506:118-125. doi: 10.1016/j.apcata.2015.09.001
|
40 |
OH S Y, NGUYEN T H A. Ozonation of phenol in the presence of biochar and carbonaceous materials:The effect of surface functional groups and graphitic structure on the formation of reactive oxygen species[J]. Journal of Environmental Chemical Engineering, 2022, 10(2):107386. doi: 10.1016/j.jece.2022.107386
|
41 |
DONG Yuming, YANG Hongxiao, HE Kun,et al. β-MnO 2 nanowires:A novel ozonation catalyst for water treatment[J]. Applied Catalysis B:Environmental, 2009, 85(3/4):155-161. doi: 10.1016/j.apcatb.2008.07.007
|
42 |
GUZMÁN I C, RODRÍGUEZ S J L, POZNYAK T,et al. Effect of sulphate and chloride ions on the oxidation of phenolic compounds by ozonation catalyzed with CeO 2 [J]. Ozone:Science & Engineering, 2021, 43(6):592-605. doi: 10.1080/01919512.2021.1892475
|
43 |
ZHANG Jingwen, SHAO Shengjuan, DING Xin,et al. Removal of phenol from wastewater by high-gravity intensified heterogeneous catalytic ozonation with activated carbon[J]. Environmental Science and Pollution Research, 2022, 29(23):34830-34840. doi: 10.1007/s11356-021-18093-y
|
44 |
|
|
DONG Yuming, JIANG Pingping, ZHANG Aimin. Catalytic ozonation degradation of phenol in water by mesoporous α-FeOOH[J]. Chinese Journal of Inorganic Chemistry, 2009, 25(9):1595-1600. doi: 10.3321/j.issn:1001-4861.2009.09.014
|
45 |
LI Yangyang, ZHANG Yunshang, QIAN Kun,et al. Metal-support interactions in metal/oxide catalysts and oxide-metal interactions in oxide/metal inverse catalysts[J]. ACS Catalysis, 2022, 12(2):1268-1287. doi: 10.1021/acscatal.1c04854
|
46 |
KEYKAVOOS R, MANKIDY R, MA H,et al. Mineralization of bisphenol A by catalytic ozonation over alumina[J]. Separation and Purification Technology, 2013, 107:310-317. doi: 10.1016/j.seppur.2013.01.050
|
47 |
DAI Qizhou, WANG Jiayu, CHEN Jun,et al. Ozonation catalyzed by cerium supported on activated carbon for the degradation of typical pharmaceutical wastewater[J]. Separation and Purification Technology, 2014, 127:112-120. doi: 10.1016/j.seppur.2014.01.032
|
48 |
YU Li, HAN Peiwei, JIN Haibo,et al. Catalytic ozonation of three isomeric cresols in the presence of NaCl with nano-mesoporous β-molecular sieves[J]. Process Safety and Environmental Protection, 2019, 129:63-73. doi: 10.1016/j.psep.2019.06.020
|
49 |
WEI Kajia, WANG Zhuo, OUYANG Changpei,et al. A hybrid fluidized-bed reactor(HFBR) based on arrayed ceramic membranes(ACMs) coupled with powdered activated carbon(PAC) for efficient catalytic ozonation:A comprehensive study on a pilot scale[J]. Water Research, 2020, 173:115536. doi: 10.1016/j.watres.2020.115536
|
50 |
|
|
ZHOU YunRui, ZHU WanPeng, LIU Fudong WANG,et al. Effect of alumina structure on catalytic ozonation activity[J]. Acta Chimica Sinica, 2006, 64(9):889-893. doi: 10.3321/j.issn:0567-7351.2006.09.012
|
51 |
MARTINS R C, QUINTA-FERREIRA R M. Manganese-based catalysts for the catalytic remediation of phenolic acids by ozone[J]. Ozone:Science & Engineering, 2009, 31(5):402-411. doi: 10.1080/01919510903170393
|
52 |
ZHANG Jingwen, GUO Qiang, WU Wenli,et al. Preparation of Fe-MnO x /AC by high gravity method for heterogeneous catalytic ozonation of phenolic wastewater[J]. Chemical Engineering Science, 2022, 255:117667. doi: 10.1016/j.ces.2022.117667
|
53 |
ZHOU Lilong, ZHANG Shanshan, LI Zhengjie,et al. Efficient degradation of phenol in aqueous solution by catalytic ozonation over MgO/AC[J]. Journal of Water Process Engineering, 2020, 36:101168. doi: 10.1016/j.jwpe.2020.101168
|
54 |
LI Siyang, ZHAN Shujuan, SUN Jingxiang,et al. Enhanced ozonation of pollutants by MgO nanoclusters/sewage sludge-derived hierarchical porous carbon:Experimental and theoretical study[J]. Environmental Science:Nano, 2021, 8(9):2569-2583. doi: 10.1039/d1en00481f
|
55 |
AMIN N A S, AKHTAR J, RAI H K. Catalytic ozonation of aqueous phenol over metal-loaded HZSM-5[J]. Water Science and Technology, 2011, 63(8):1651-1656. doi: 10.2166/wst.2011.313
|
56 |
|
|
CUI Fuxu, ZHANG Jing, ZHANG Bo,et al. Metal-loaded ZSM-5 molecular sieve catalyzed ozonation of phenol wastewater[J]. Journal of Liaoning Shihua University, 2019, 39(2):10-14. doi: 10.3969/j.issn.1672-6952.2019.02.002
|
57 |
王勇,张耀宗,毕莹莹,等. α-Fe2O3催化臭氧氧化耦合陶瓷膜处理含酚废水[J]. 环境工程技术学报,2023,13(1):232-239.
|
|
WANG Yong, ZHANG Yaozong, BI Yingying,et al. α-Fe2O3 catalytic ozonation coupled with ceramic membrane for phenol wastewater treatment[J]. Journal of Environmental Engineering Technology,2023,13(1):232-239.
|
58 |
LEE Wen jie, BAO Yueping, HU Xiao,et al. Hybrid catalytic ozonation-membrane filtration process with CeO x and MnO x impregnated catalytic ceramic membranes for micropollutants degradation[J]. Chemical Engineering Journal, 2019, 378:121670. doi: 10.1016/j.cej.2019.05.031
|
59 |
NAWAZ F, XIE Yongbing, XIAO Jiadong,et al. Insights into the mechanism of phenolic mixture degradation by catalytic ozonation with a mesoporous Fe 3O 4/MnO 2 composite[J]. RSC Advances, 2016, 6(35):29674-29684. doi: 10.1039/c6ra03167f
|
60 |
SHAHAMAT Y D, FARZADKIA M, NASSERI S,et al. Magnetic heterogeneous catalytic ozonation:A new removal method for phenol in industrial wastewater[J]. Journal of Environmental Health Science and Engineering, 2014, 12(1):50. doi: 10.1186/2052-336x-12-50
|
61 |
WANG Jing, QUAN Xie, CHEN Shuo,et al. Enhanced catalytic ozonation by highly dispersed CeO 2 on carbon nanotubes for mineralization of organic pollutants[J]. Journal of Hazardous Materials, 2019, 368:621-629. doi: 10.1016/j.jhazmat.2019.01.095
|
62 |
OPUTU O, CHOWDHURY M, NYAMAYARO K,et al. A novel β-FeOOH/NiO composite material as a potential catalyst for catalytic ozonation degradation of 4-chlorophenol[J]. RSC Advances, 2015, 5(73):59513-59521. doi: 10.1039/c5ra09177b
|
63 |
|
|
ZHANG Lanhe, GUO Lin, LI Jianing,et al. Preparation of Fe 2O 3/modified natural zeolite catalyst and mechanism study on catalytic ozonation of 4-chlorophenol[J]. Chemical Industry and Engineering Progress, 2020, 39(8):3086-3094. doi: 10.16085/j.issn.1000-6613.2019-1735
|
64 |
ZHANG Jie, DONG Ben, LIU Jing,et al. The role of Mn doping on Ce-based γ-Al 2O 3 catalysts for phenol degradation[J]. Environmental Engineering Science, 2022, 39(1):56-63. doi: 10.1089/ees.2020.0494
|
65 |
LIU Yanfang, LI Guixia, ZHANG Zhili,et al. Catalytic ozonation of bisphenol A in aqueous medium by Mn-Fe/Al 2O 3 catalyst[J]. Journal of Advanced Oxidation Technologies, 2016, 19(2):358-365. doi: 10.1515/jaots-2016-0220
|
66 |
ZHANG Manning, YIN Dulin, GUO Jinjin,et al. Ternary catalyst Mn-Fe-Ce/Al 2O 3 for the ozonation of phenol pollutant:Performance and mechanism[J]. Environmental Science and Pollution Research, 2021, 28(25):32921-32932. doi: 10.1007/s11356-021-13006-5
|
67 |
JOTHINATHAN L, CAI Q Q, ONG S L,et al. Fe-Mn doped powdered activated carbon pellet as ozone catalyst for cost-effective phenolic wastewater treatment:Mechanism studies and phenol by-products elimination[J]. Journal of Hazardous Materials, 2022, 424:127483. doi: 10.1016/j.jhazmat.2021.127483
|
68 |
YANG Yunlong, SHI Xianwei, ZHAO Min,et al. Heterogeneous catalytic ozonation of phenol by a novel binary catalyst of Fe-Ni/MAC[J]. Catalysts, 2020, 10(10):1123. doi: 10.3390/catal10101123
|
69 |
|
|
XU Zengyi, YU Jinpeng, HAO Min,et al. Study on the performance of Co-Fe/ZSM-5 catalytic ozonation to degrade phenol in wastewater[J]. Fertilizer & Health, 2020, 47(6):39-45. doi: 10.3969/j.issn.2096-7047.2020.06.009
|
70 |
|
|
XU Zengyi, YU Jinpeng, LI Sen,et al. Treatment of fine chemical wastewater by catalytic ozonation with Zn-Co/ZSM-5[J]. Environmental Protection of Chemical Industry, 2021, 41(5):589-594. doi: 10.3969/j.issn.1006-1878.2021.05.008
|
71 |
ZHAO Kanghe, MA Yulong, LIN Feng,et al. Refractory organic compounds in coal chemical wastewater treatment by catalytic ozonation using Mn-Cu-Ce/Al 2O 3 [J]. Environmental Science and Pollution Research, 2021, 28(30):41504-41515. doi: 10.1007/s11356-021-13629-8
|
72 |
SHAO Shengjuan, LI Zhixing, ZHANG Jingwen,et al. Preparation of Ce-MnO x / γ-Al 2O 3 by high gravity-assisted impregnation method for efficient catalytic ozonation[J]. Chemical Engineering Science, 2022, 248:117246. doi: 10.1016/j.ces.2021.117246
|
73 |
MARTINS R C, QUINTA-FERREIRA R M. Catalytic ozonation of phenolic acids over a Mn-Ce-O catalyst[J]. Applied Catalysis B:Environmental, 2009, 90(1/2):268-277. doi: 10.1016/j.apcatb.2009.03.023
|
74 |
MA Dingren, LIU Weiqi, HUANG Yajing,et al. Enhanced catalytic ozonation for eliminating CH 3SH via stable and circular electronic metal-support interactions of Si—O—Mn bonds with low Mn loading[J]. Environmental Science & Technology, 2022, 56(6):3678-3688. doi: 10.1021/acs.est.1c07065
|
75 |
KUANG Panyong, WANG Yaru, ZHU Bicheng,et al. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H 2-evolution activity[J]. Advanced Materials, 2021, 33(18):e2008599. doi: 10.1002/adma.202008599
|
76 |
NAWAZ F, XIE Yongbing, XIAO Jiadong,et al. The influence of the substituent on the phenol oxidation rate and reactive species in cubic MnO 2 catalytic ozonation[J]. Catalysis Science & Technology, 2016, 6(21):7875-7884. doi: 10.1039/c6cy01542e
|
77 |
YANG Wenwen, LU Zheng, VOGLER B,et al. Enhancement of copper catalyst stability for catalytic ozonation in water treatment using ALD overcoating[J]. ACS Applied Materials & Interfaces, 2018, 10(50):43323-43326. doi: 10.1021/acsami.8b18299
|
78 |
|
|
CHU Tiancheng, JI Xiangyu, LI Xiaoyu,et al. Preparation of Mn-Ce/C-Al 2O 3 catalyst and its application in phenol wastewater treatment[J]. Energy Environmental Protection, 2021, 35(5):29-36. doi: 10.3969/j.issn.1006-8759.2021.05.005
|