1 |
王莉,何蓉,雷海涛. 城镇污水处理厂污泥处理处置技术现状综述[J]. 净水技术,2022,41(11):16-21,69.
|
|
WANG Li, HE Rong, LEI Haitao. General review of sludge treatment and disposal technology for urban WWTP[J]. Water Purification Technology,2022,41(11):16-21,69.
|
2 |
|
|
DAI Xiaohu, HOU Li’an, ZHANG Linwei,et al. Safe disposal and resource recovery of urban sewage sludge in China[J]. Strategic Study of CAE, 2022, 24(5):145-153. doi: 10.15302/j-sscae-2022.05.017
|
3 |
WU Boran, DAI Xiaohu, CHAI Xiaoli. Critical review on dewatering of sewage sludge:Influential mechanism,conditioning technologies and implications to sludge re-utilizations[J]. Water Research, 2020, 180:115912. doi: 10.1016/j.watres.2020.115912
|
4 |
KHANH NGUYEN V, KUMAR CHAUDHARY D, HARI DAHAL R,et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge[J]. Fuel, 2021, 285:119105. doi: 10.1016/j.fuel.2020.119105
|
5 |
LIU Xiaoguang, WANG Qian, TANG Yuanzhi,et al. Hydrothermal pretreatment of sewage sludge for enhanced anaerobic digestion:Resource transformation and energy balance[J]. Chemical Engineering Journal, 2021, 410:127430. doi: 10.1016/j.cej.2020.127430
|
6 |
GUO Yiping, KIM S H, SUNG S H,et al. Effect of ultrasonic treatment of digestion sludge on bio-hydrogen production from sucrose by anaerobic fermentation[J]. International Journal of Hydrogen Energy, 2010, 35(8):3450-3455. doi: 10.1016/j.ijhydene.2010.01.090
|
7 |
JIANG Xinbai, CHEN Dan, MU Yang,et al. Electricity-stimulated anaerobic system(ESAS) for enhanced energy recovery and pollutant removal:A critical review[J]. Chemical Engineering Journal, 2021, 411:128548. doi: 10.1016/j.cej.2021.128548
|
8 |
HUANG Xiao, DONG Wenyi, WANG Hongjie,et al. Role of acid/alkali-treatment in primary sludge anaerobic fermentation:Insights into microbial community structure,functional shifts and metabolic output by high-throughput sequencing[J]. Bioresource Technology, 2018, 249:943-952. doi: 10.1016/j.biortech.2017.10.104
|
9 |
|
|
LIU Gaige. Performance and mechanism of waste activated sludge decomposition enhanced by the combined lysozyme and rhamnolipid[D]. Harbin:Harbin Institute of Technology, 2019. doi: 10.1016/j.biortech.2019.121703
|
10 |
LIU Gaige, WANG Ke, LI Xiangkun,et al. Enhancement of excess sludge hydrolysis and decomposition with different lysozyme dosage[J]. Journal of Hazardous Materials, 2019, 366:395-401. doi: 10.1016/j.jhazmat.2018.12.002
|
11 |
CAO Xiuqin, LI Songyue, LIU Chaolei. Effect of lysozyme combined with hydrothermal pretreatment on excess sludge and anaerobic digestion[EB/OL]. (2023-10)[2023-11-15].
|
12 |
HU Yingli, DAI Lingmei, LIU Dehua,et al. Progress & prospect of metal-organic frameworks(MOFs) for enzyme immobilization(enzyme/MOFs)[J]. Renewable and Sustainable Energy Reviews, 2018, 91:793-801. doi: 10.1016/j.rser.2018.04.103
|
13 |
DONG Tianyu, ZHOU Xiaonan, DAI Yajie,et al. Application of magnetic immobilized enzyme of nano dialdehyde starch in deacidification of rice bran oil[J]. Enzyme and Microbial Technology, 2022, 161:110116. doi: 10.1016/j.enzmictec.2022.110116
|
14 |
NOURI M, KHODAIYAN F. Green synthesis of chitosan magnetic nanoparticles and their application with poly-aldehyde kefiran cross-linker to immobilize pectinase enzyme[J]. Biocatalysis and Agricultural Biotechnology, 2020, 29:101681. doi: 10.1016/j.bcab.2020.101681
|
15 |
LI Hao, KOU Beibei, YUAN Yali,et al. Porous Fe 3O 4@COF-immobilized gold nanoparticles with excellent catalytic performance for sensitive electrochemical detection of ATP[J]. Biosensors & Bioelectronics, 2022, 197:113758. doi: 10.1016/j.bios.2021.113758
|
16 |
LIU Dongmei, DONG Chen. Recent advances in nano-carrier immobilized enzymes and their applications[J]. Process Biochemistry, 2020, 92:464-475. doi: 10.1016/j.procbio.2020.02.005
|
17 |
|
|
ZHANG Zeyu, LI Ruying. Study on the nitrogen removal in river water by immobilized microorganisms[J]. Acta Scientiae Circumstantiae, 2020, 40(1):161-165. doi: 10.13671/j.hjkxxb.2019.0360
|
18 |
YANG Qinxue, YAN Ying, YANG Xiaofang,et al. Enzyme immobilization in cage-like 3D-network PVA-H and GO modified PVA-H(GO@PVA-H) with stable conformation and high activity[J]. Chemical Engineering Journal, 2019, 372:946-955. doi: 10.1016/j.cej.2019.04.216
|
19 |
WANG Ming, DONG Wenjing, GUO Yaoli,et al. Positively charged nanofiltration membranes mediated by a facile polyethyleneimine-Noria interlayer deposition strategy[J]. Desalination, 2021, 513:114836. doi: 10.1016/j.desal.2020.114836
|
20 |
ZHANG Xinyu, LIN Zhenglun, WU Daoji,et al. Covalent codeposition modification of reverse osmosis membranes with Noria and zwitterionic copolymers for antifouling in reclaimed water production[J]. Desalination, 2023, 567:116973. doi: 10.1016/j.desal.2023.116973
|
21 |
KUDO H, HAYASHI R, MITANI K,et al. Molecular waterwheel(noria) from a simple condensation of resorcinol and an alkanedial[J]. Angewandte Chemie(International Ed. in English), 2006, 45(47):7948-7952. doi: 10.1002/anie.200603013
|
22 |
|
|
ZHAO Yuhan, WANG Haolong, ZHOU Lishan,et al. Anaerobic acid production characteristics of excess sludge enhanced by ultrasound and biological enzymes[J]. Industrial Water Treatment, 2023, 43(11):181-188. doi: 10.19965/j.cnki.iwt.2022-1164
|
23 |
ZHAI Zhe, JIANG Chi, ZHAO Na,et al. Fabrication of advanced nanofiltration membranes with nanostrand hybrid morphology mediated by ultrafast Noria-polyethyleneimine codeposition[J]. Journal of Materials Chemistry A, 2018, 6(42):21207-21215. doi: 10.1039/c8ta08273a
|
24 |
TIAN Ye, CAO Yewen, WANG Yu,et al. Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel-inspired polymers[J]. Advanced Materials, 2013, 25(21):2980-2983. doi: 10.1002/adma.201300118
|
25 |
WAN Juanjuan, ZHANG Lijuan, JIA Boyu,et al. Effects of enzymes on organic matter conversion in anaerobic fermentation of sludge to produce volatile fatty acids[J]. Bioresource Technology, 2022, 366:128227. doi: 10.1016/j.biortech.2022.128227
|
26 |
WANG Tianfeng, SHAO Liming, LI Tianshui,et al. Digestion and dewatering characteristics of waste activated sludge treated by an anaerobic biofilm system[J]. Bioresource Technology, 2014, 153:131-136. doi: 10.1016/j.biortech.2013.11.066
|
27 |
李潜. 溶菌酶高产菌株的筛选及其产酶研究[D]. 保定:河北农业大学,2008.
|
|
LI Qian. Screening for high lysozyme-yielding strain and the studies on fermentation of producing lysozyme [D]. Baoding:Hebei Agricultural University,2008.
|
28 |
XIN Xiaodong, HE Junguo, LI Lin,et al. Enzymes catalyzing pre-hydrolysis facilitated the anaerobic fermentation of waste activated sludge with acidogenic and microbiological perspectives[J]. Bioresource Technology, 2018, 250:69-78. doi: 10.1016/j.biortech.2017.09.211
|
29 |
CHEN Yinguang, JIANG Su, YUAN Hongying,et al. Hydrolysis and acidification of waste activated sludge at different pHs[J]. Water Research, 2007, 41(3):683-689. doi: 10.1016/j.watres.2006.07.030
|
30 |
HE Zhangwei, LIU Wenzong, TANG Congcong,et al. Performance and microbial community responses of anaerobic digestion of waste activated sludge to residual benzalkonium chlorides[J]. Energy Conversion and Management, 2019, 202:112211. doi: 10.1016/j.enconman.2019.112211
|
31 |
DAREIOTI M A, KORNAROS M. Effect of hydraulic retention time(HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system[J]. Bioresource Technology, 2014, 167:407-415. doi: 10.1016/j.biortech.2014.06.045
|
32 |
WANG Qingyan, ZHANG Panyue, BAO Shuai,et al. Chain elongation performances with anaerobic fermentation liquid from sewage sludge with high total solid as electron acceptor[J]. Bioresource Technology, 2020, 306:123188. doi: 10.1016/j.biortech.2020.123188
|
33 |
LIU Xiang, WU Fengjie, ZHANG Min,et al. Role of potassium ferrate in anaerobic digestion of waste activated sludge:Phenotypes and genotypes[J]. Bioresource Technology, 2023, 383:129247. doi: 10.1016/j.biortech.2023.129247
|
34 |
XI Shihao, DONG Xinlei, LIN Qingshan,et al. Enhancing anaerobic fermentation of waste activated sludge by investigating multiple electrochemical pretreatment conditions:Performance,modeling and microbial dynamics[J]. Bioresource Technology, 2023, 368:128364. doi: 10.1016/j.biortech.2022.128364
|
35 |
WANG Zhihui, FANG Qian, LUO Jin,et al. Optimized process for the odd-carbon volatile fatty acids(OCFA) directional production:Anaerobic co-digestion of disused grease with sludge by anaerobic sequencing batch reactor[J]. Journal of Water Process Engineering, 2022, 46:102592. doi: 10.1016/j.jwpe.2022.102592
|