1 |
PANKRATOVA G, HEDERSTEDT L, GORTON L. Extracellular electron transfer features of Gram-positive bacteria[J]. Analytica Chimica Acta, 2019, 1076:32-47. doi: 10.1016/j.aca.2019.05.007
|
2 |
MUNOZ-CUPA C, HU Yulin, XU Chunbao,et al. An overview of microbial fuel cell usage in wastewater treatment,resource recovery and energy production[J]. Science of the Total Environment, 2021, 754:142429. doi: 10.1016/j.scitotenv.2020.142429
|
3 |
GUSTAVE W, YUAN Zhaofeng, LIU Fuyuan,et al. Mechanisms and challenges of microbial fuel cells for soil heavy metal(loid)s remediation[J]. Science of the Total Environment, 2021, 756:143865. doi: 10.1016/j.scitotenv.2020.143865
|
4 |
LIU Wenbin, YANG Guang, JIA Hui,et al. A novel UASB-MFC dual sensors system for wastewater treatment:On-line sensor recovery and electrode cleaning in the long-term operation[J]. Chemosphere, 2020, 246:125751. doi: 10.1016/j.chemosphere.2019.125751
|
5 |
ENIOLA J O, KUMAR R, BARAKAT M A,et al. A review on conventional and advanced hybrid technologies for pharmaceutical wastewater treatment[J]. Journal of Cleaner Production, 2022, 356:131826. doi: 10.1016/j.jclepro.2022.131826
|
6 |
ZHU Hongyi, HU Xueli, ZHA Zhengtai,et al. Long-time enrofloxacin processing with microbial fuel cells and the influence of coexisting heavy metals(Cu and Zn)[J]. Journal of Environmental Chemical Engineering, 2022, 10(3):107965. doi: 10.1016/j.jece.2022.107965
|
7 |
严伟富,肖勇,王淑华,等. 氧四环素的微生物燃料电池处理及微生物群落[J]. 环境科学,2018,39(3):1379-1385.
|
|
YAN Weifu, XIAO Yong, WANG Shuhua,et al. Oxytetracycline wastewater treatment in microbial fuel cells and the analysis of microbial communities[J]. Environmental Science,2018,39(3):1379-1385.
|
8 |
THAPA B S, PANDIT S, PATWARDHAN S B,et al. Application of microbial fuel cell(MFC) for pharmaceutical wastewater treatment:An overview and future perspectives[J]. Sustainability, 2022, 14(14):8379. doi: 10.3390/su14148379
|
9 |
耿春茂,曹意茹,陆海军,等. 生物强化技术处理高盐难降解三元前驱体生产废水的实验研究[J]. 水处理技术,2023,49(9):124-127.
|
|
GENG Chunmao, CAO Yiru, LU Haijun,et al. Experimental study on treatment of ternary precursor wastewater with high salinity and difficult biodegradation by bioaugmentation technology[J]. Technology of Water Treatment,2023,49(9):124-127.
|
10 |
王亚军,司运美,李彦娟. 群体感应在生物强化功能菌定殖及降解能力增强中的作用研究进展[J]. 应用生态学报,2022,33(10):2871-2880.
|
|
WANG Yajun, SI Yunmei, LI Yanjuan. Research progress on the application of quorum sensing in the colonization and degradation enhancement of bioaugmentation functional bacteria[J]. Chinese Journal of Applied Ecology,2022,33(10):2871-2880.
|
11 |
吴恒,张千,刘向阳,等. 生物强化方式对生物转盘处理养殖废水效果及生物多样性的影响[J]. 环境科学研究,2020,33(4):958-968.
|
|
WU Heng, ZHANG Qian, LIU Xiangyang,et al. Comparison of swine wastewater treatment performance and microbial diversity of rotating biological contractor with different bioaugmentation methods[J]. Research of Environmental Sciences,2020,33(4):958-968.
|
12 |
李婷,张玉秀,祖德彪,等. 红球菌KDPy1在焦化废水生物处理中的强化作用[J]. 工业水处理,2021,41(10):96-103.
|
|
LI Ting, ZHANG Yuxiu, ZU Debiao,et al. Bioaugmentation of Rhodococcus sp. KDPy1 in coking wastewater treatment[J]. Industrial Water Treatment,2021,41(10):96-103.
|
13 |
WEYENS N, VAN DER LELIE D, ARTOIS T,et al. Bioaugmentation with engineered endophytic bacteria improves contaminant fate in phytoremediation[J]. Environmental Science & Technology, 2009, 43(24):9413-9418. doi: 10.1021/es901997z
|
14 |
WANG Juehua, HE Hongzhen, WANG Meizhen,et al. Bioaugmentation of activated sludge with Acinetobacter sp. TW enhances nicotine degradation in a synthetic tobacco wastewater treatment system[J]. Bioresource Technology, 2013, 142:445-453. doi: 10.1016/j.biortech.2013.05.067
|
15 |
BRÁNYIK T, VICENTE A A, DOSTÁLEK P,et al. Continuous beer fermentation using immobilized yeast cell bioreactor systems[J]. Biotechnology Progress,2005,21(3):653-663.
|
16 |
LIU Lihong, LEE Chinyu, HO K C,et al. Occurrence of power overshoot for two-chambered MFC at nearly steady-state operation[J]. International Journal of Hydrogen Energy, 2011, 36(21):13896-13899. doi: 10.1016/j.ijhydene.2011.02.130
|
17 |
IEROPOULOS I, WINFIELD J, GREENMAN J. Effects of flow-rate,inoculum and time on the internal resistance of microbial fuel cells[J]. Bioresource Technology, 2010, 101(10):3520-3525. doi: 10.1016/j.biortech.2009.12.108
|
18 |
BANIASADI B, VAHABZADEH F. The performance of a cyanobacterial biomass-based microbial fuel cell(MFC) inoculated with Shewanella oneidensis MR-1[J]. Journal of Environmental Chemical Engineering, 2021, 9(6):106338. doi: 10.1016/j.jece.2021.106338
|
19 |
陈嘉瑾,徐汉,张志浩,等. 生物电化学系统废水脱氮机理及影响研究进展[J]. 工业水处理,2022,42(3):23-32.
|
|
CHEN Jiajin, XU Han, ZHANG Zhihao,et al. Research progress on the mechanism and influence of nitrogen removal by bioelectrochemical systems in wastewater[J]. Industrial Water Treatment,2022,42(3):23-32.
|
20 |
YE Yuanyao, NGO H H, GUO Wenshan,et al. Microbial fuel cell for nutrient recovery and electricity generation from municipal wastewater under different ammonium concentrations[J]. Bioresource Technology, 2019, 292:121992. doi: 10.1016/j.biortech.2019.121992
|
21 |
LUO Haiping, LIU Guangli, ZHANG Renduo,et al. Phenol degradation in microbial fuel cells[J]. Chemical Engineering Journal, 2009, 147(2/3):259-264. doi: 10.1016/j.cej.2008.07.011
|
22 |
KIM Y, LOGAN B E. Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems[J]. Desalination, 2013, 308:115-121. doi: 10.1016/j.desal.2012.07.031
|
23 |
MA Cong, QIN Dan, SUN Qian,et al. Removal of environmental estrogens by bacterial cell immobilization technique[J]. Chemosphere, 2016, 144:607-614. doi: 10.1016/j.chemosphere.2015.09.014
|
24 |
DAI H N, DUONG NGUYEN T A, LE L P MY,et al. Power generation of Shewanella oneidensis MR-1 microbial fuel cells in bamboo fermentation effluent[J]. International Journal of Hydrogen Energy, 2021, 46(31):16612-16621. doi: 10.1016/j.ijhydene.2020.09.264
|
25 |
LIU Zhuangzhuang, YANG Yabo, LIU Gang,et al. Study on a novel immobilized microbe pellets constructed with Alcaligenes sp. R3 and its ability to remove tetracycline[J]. Journal of Environmental Chemical Engineering, 2023, 11(2):109378. doi: 10.1016/j.jece.2023.109378
|
26 |
LI Shuo, YANG Mingxiang, WANG Hao,et al. Dynamic characteristics of immobilized microorganisms for remediation of nitrogen-contaminated groundwater and high-throughput sequencing analysis of the microbial community[J]. Environmental Pollution, 2020, 267:114875. doi: 10.1016/j.envpol.2020.114875
|
27 |
MURSHID S, DHAKSHINAMOORTHY G P. Application of an immobilized microbial consortium for the treatment of pharmaceutical wastewater:Batch-wise and continuous studies[J]. Chinese Journal of Chemical Engineering, 2021, 29:391-400. doi: 10.1016/j.cjche.2020.04.008
|
28 |
张博凡,熊鑫,韩卓,等. 菌糠强化微生物降解石油污染土壤修复研究[J]. 中国环境科学,2019,39(3):1139-1146.
|
|
ZHANG Bofan, XIONG Xin, HAN Zhuo,et al. Bioremediation of petroleum contaminated soil by microoganisms enhanced with spent mushroom substrate[J]. China Environmental Science,2019,39(3):1139-1146.
|
29 |
KHAN N, ANWER A H, AHMAD A,et al. Investigating microbial fuel cell aided bio-remediation of mixed phenolic contaminants under oxic and anoxic environments[J]. Biochemical Engineering Journal, 2020, 155:107485. doi: 10.1016/j.bej.2019.107485
|
30 |
HUANG Yuqing, LIU Xinmin, HU Xiude,et al. Treatment of phenolic wastewater by anaerobic fluidized bed microbial fuel cell filled with polyaniline-macroporous adsorption resin as multifunctional carrier[J]. The Canadian Journal of Chemical Engineering,2023,101(10):5530-5541.
|
31 |
KHAN N, ANWER A H, AHMAD A,et al. Investigation of CNT/PPy-modified carbon paper electrodes under anaerobic and aerobic conditions for phenol bioremediation in microbial fuel cells[J]. ACS Omega, 2019, 5(1):471-480. doi: 10.1021/acsomega.9b02981
|
32 |
WANG Chengzhi, WU Guanlan, ZHU Xiaolin,et al. Synergistic degradation for o-chlorophenol and enhancement of power generation by a coupled photocatalytic-microbial fuel cell system[J]. Chemosphere, 2022, 293:133517. doi: 10.1016/j.chemosphere.2022.133517
|
33 |
LU Nan, LI Lu, WANG Chengzhi,et al. Simultaneous enhancement of power generation and chlorophenol degradation in nonmodified microbial fuel cells using an electroactive biofilm carbon felt anode[J]. Science of the Total Environment, 2021, 783:147045. doi: 10.1016/j.scitotenv.2021.147045
|
34 |
MEI Xiaoxue, GUO Changhong, LIU Bingfeng,et al. Shaping of bacterial community structure in microbial fuel cells by different inocula[J]. RSC Advances, 2015, 5(95):78136-78141. doi: 10.1039/c5ra16382j
|
35 |
MIRAN W, NAWAZ M, KADAM A,et al. Microbial community structure in a dual chamber microbial fuel cell fed with brewery waste for azo dye degradation and electricity generation[J]. Environmental Science and Pollution Research International, 2015, 22(17):13477-13485. doi: 10.1007/s11356-015-4582-8
|
36 |
ZHANG Linfang, FU Guokai, ZHANG Zhi. High-efficiency salt,sulfate and nitrogen removal and microbial community in biocathode microbial desalination cell for mustard tuber wastewater treatment[J]. Bioresource Technology, 2019, 289:121630. doi: 10.1016/j.biortech.2019.121630
|
37 |
CHU Na, ZHANG Lixia, HAO Wen,et al. Rechargeable microbial fuel cell based on bidirectional extracellular electron transfer[J]. Bioresource Technology, 2021, 329:124887. doi: 10.1016/j.biortech.2021.124887
|
38 |
LIU Zhao, CHEN Zhongzhou, WU Wei. Crystallization and preliminary X-ray studies of ferric uptake regulator from Magnetospirillum gryphiswaldense [J]. Acta Crystallographica. Section F,Structural Biology and Crystallization Communications, 2012, 68(Pt 8):902-905. doi: 10.1107/s1744309112024311
|
39 |
OBAYEMI J D, DOZIE-NWACHUKWU S, DANYUO Y,et al. Biosynthesis and the conjugation of magnetite nanoparticles with luteinizing hormone releasing hormone(LHRH)[J]. Materials Science and Engineering:C, 2015, 46:482-496. doi: 10.1016/j.msec.2014.10.081
|
40 |
SIMA Weiping, MA Ruixiang, YIN Feixian,et al. Prompt nitrogen removal by controlling the oxygen concentration in sediment microbial fuel cell systems:The electrons allocation and its microbial mechanism[J]. Water Science and Technology, 2020, 81(6):1209-1220. doi: 10.2166/wst.2020.222
|