| 1 | Yu Yang ,  Ndayisenga F ,  Yu Zhisen , et al.  Co-substrate strategy for improved power production and chlorophenol degradation in a microbial fuel cell[J]. International Journal of Hydrogen Energy, 2019, 44 (36): 20312- 20322. doi: 10.1016/j.ijhydene.2019.05.221
 | 
																													
																						| 2 | Ali N ,  Yousaf S ,  Anam M , et al.  Evaluating the efficiency of a mixed culture biofilm for the treatment of black liquor and molasses in a mediator-less microbial fuel cell[J]. Environmental Technology, 2016, 37 (22): 2815- 2822. doi: 10.1080/09593330.2016.1166267
 | 
																													
																						| 3 | Sipos A J ,  Urakawa H .  Differential responses of nitrifying archaea and bacteria to methylene blue toxicity[J]. Letters in Applied Microbiology, 2016, 62 (2): 199- 206. URL
 | 
																													
																						| 4 | Zhang Xiaoling ,  Miao Xinxin ,  Li Jiandi , et al.  Evaluation of electricity production from Fenton oxidation pretreated sludge using a twochamber microbial fuel cell[J]. Chemical Engineering Journal, 2019, 361, 599- 608. doi: 10.1016/j.cej.2018.12.117
 | 
																													
																						| 5 | Lui Gregory ,  Jiang Gaopeng ,  Fowler M .  A high performance wastewater-fed flow-photocatalytic fuel cell[J]. Journal of Power Sources, 2019, 425, 69- 75. doi: 10.1016/j.jpowsour.2019.03.091
 | 
																													
																						| 6 | Zhang Manman ,  Wang Ying ,  Peng Liang , et al.  Combined photoelectrocatalytic microbial fuel cell(PEC-MFC) degradation of refractory organic pollutants and in-situ electricity utilization[J]. Chemosphere, 2019, 214, 669- 678. doi: 10.1016/j.chemosphere.2018.09.085
 | 
																													
																						| 7 | Li Ming ,  Zhou Minghua ,  Tan Chaolin , et al.  Enhancement of CO2 biofixation and bioenergy generation using a novel airlift type photosynthetic microbial fuel cell[J]. Bioresource Technology, 2019, 272, 501- 509. doi: 10.1016/j.biortech.2018.10.078
 | 
																													
																						| 8 | Yang Zhigang ,  Nie Changliang ,  Hou Qingjie , et al.  Coupling a photosynthetic microbial fuel cell(PMFC) with photobioreactors(PBRs) for pollutant removal and bioenergy recovery from anaerobically digested effluent[J]. Chemical Engineering Journal, 2019, 359, 402- 408. URL
 | 
																													
																						| 9 | Qian Fang ,  Wang Han ,  Ling Yichuan , et al.  Photoenhanced electrochemical interaction between Shewanella and a Hematite nanowire photoanode[J]. Nano Letters, 2014, 14 (6): 3688- 3693. doi: 10.1021/nl501664n
 | 
																													
																						| 10 | Feng Huajun ,  Liang Yuxiang ,  Guo Kun , et al.  Hybridization of photoanode and bioanode to enhance the current production of bioelectrochemical systems[J]. Water Research, 2016, 102, 428- 435. URL
 | 
																													
																						| 11 | Zhang Ying ,  Zhao Yingying ,  Zhou Minghua .  A photosynthetic algal microbial fuel cell for treating swine wastewater[J]. Environmental science and Pollution Research International, 2019, 26 (6): 6182- 6190. doi: 10.1007/s11356-018-3960-4
 | 
																													
																						| 12 | Xu Peng ,  Xu Hao ,  Zheng Dayang .  Simultaneous electricity generation and wastewater treatment in a photocatalytic fuel cell integrating electro-Fenton process[J]. Journal of Power Sources, 2019, 421, 156- 161. doi: 10.1016/j.jpowsour.2019.03.033
 | 
																													
																						| 13 | Santoro C ,  Walter X A ,  Soavi F , et al.  Self-stratified and self-powered micro-supercapacitor integrated into a microbial fuel cell operating in human urine[J]. Electrochimica Acta, 2019, 307, 241- 252. doi: 10.1016/j.electacta.2019.03.194
 | 
																													
																						| 14 | Walter X A ,  Greenman J ,  Ieropoulos I .  Binder materials for the cathodes applied to self-stratifying membraneless microbial fuel cell[J]. Bioelectrochemistry(Amsterdam, Netherlands), 2018, 123, 119- 124. doi: 10.1016/j.bioelechem.2018.04.011
 | 
																													
																						| 15 | Guan Chungyu ,  Tseng Yiho ,  Tsang D C D , et al.  Wetland plant microbial fuel cells for remediation of hexavalent chromium contaminated soils and electricity production[J]. Journal of Hazardous Materials, 2019, 365, 137- 145. doi: 10.1016/j.jhazmat.2018.10.086
 | 
																													
																						| 16 | Zhao Lin ,  Deng Jinghui ,  Hou Huijie , et al.  Investigation of PAH and oil degradation along with electricity generation in soil using an enhanced plant-microbial fuel cell[J]. Journal of Cleaner Production, 2019, 221, 678- 683. doi: 10.1016/j.jclepro.2019.02.212
 | 
																													
																						| 17 | Castresana P A ,  Martinez S M ,  Freeman E , et al.  Electricity generation from moss with light-driven microbial fuel cells[J]. Electrochimica Acta, 2019, 298, 934- 942. doi: 10.1016/j.electacta.2018.12.108
 | 
																													
																						| 18 | Xu Fei ,  Cao Fuqian ,  Kong Qiang , et al.  Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell[J]. Chemical Engineering Journal, 2018, 339, 479- 486. doi: 10.1016/j.cej.2018.02.003
 | 
																													
																						| 19 | Kabutey F T ,  Zhao Qingliang ,  Wei Liangliang .  An overview of plant microbial fuel cells(PMFCs):Configurations and applications[J]. Renewable and Sustainable Energy Reviews, 2019, 110, 402- 414. doi: 10.1016/j.rser.2019.05.016
 | 
																													
																						| 20 | Venkata M S ,  Mohanakrishna G ,  Chiranjeevi P .  Sustainable power generation from floating macrophytes based ecological microenvironment through embedded fuel cells along with simultaneous wastewater treatment[J]. Bioresource Technology, 2011, 102 (14): 7036- 7042. doi: 10.1016/j.biortech.2011.04.033
 | 
																													
																						| 21 | 綦琪, 王许云, 贾云.  微生物燃料电池电极材料研究进展[J]. 科技导报, 2015, 33 (14): 28- 31. doi: 10.3981/j.issn.1000-7857.2015.14.004
 | 
																													
																						| 22 | Jin Xiaojun ,  Guo Fei ,  Ma Weiqi .  Heterotrophic anodic denitrification improves carbon removal and electricity recovery efficiency in microbial fuel cells[J]. Chemical Engineering Journal, 2019, 370, 527- 535. doi: 10.1016/j.cej.2019.03.023
 | 
																													
																						| 23 | Zhao Na ,  Ma Zhaokun ,  Song Huaihe , et al.  Enhancement of bioelectricity generation by synergistic modification of vertical carbon nanotubes/polypyrrole for the carbon fibers anode in microbial fuel cell[J]. Electrochimica Acta, 2019, 296, 69- 74. doi: 10.1016/j.electacta.2018.11.039
 | 
																													
																						| 24 | Ren Pengyuan ,  Ci Suqin ,  Ding Yichun , et al.  Molten-salt-mediated synthesis of porous Fe-containing N-doped carbon as efficient cathode catalysts for microbial fuel cells[J]. Applied Surface Science, 2019, 481, 1206- 1212. doi: 10.1016/j.apsusc.2019.03.279
 | 
																													
																						| 25 | Massaglia G ,  Margaria V ,  Sacco A , et al.  In situ continuous current production from marine floating microbial fuel cells[J]. Applied Energy, 2018, 230, 78- 85. doi: 10.1016/j.apenergy.2018.08.061
 | 
																													
																						| 26 | Kamyabi M A ,  Qaratapeh K E ,  Jadali S .  Decorating the carbon felt electrode with polymeric platinize nanocomposite:characterization and electrocatalytic activity towards methanol oxidation reaction[J]. Journal of Chemical Sciences, 2019, 131 (7): 1- 9. URL
 | 
																													
																						| 27 | Jeong K I ,  Song S A ,  Kim S S .  Glucose-based carbon-coating layer on carbon felt electrodes of vanadium redox flow batteries[J]. Composites Part B, 2019, 131 (7): 1- 9. doi: 10.1016/j.compositesb.2019.107072
 | 
																													
																						| 28 | Pareek A ,  Sravan J S ,  Mohan S V .  Graphene modified electrodes for bioelectricity generation in mediator-less microbial fuel cell[J]. Journal of Materials Science, 2019, 54 (17): 11604- 11617. doi: 10.1007/s10853-019-03718-y
 | 
																													
																						| 29 | 韩军凯, 冯奕钰, 李瑀, 等.  刺激响应型石墨烯材料的研究新进展[J]. 功能高分子学报, 2019, 32 (4): 411- 420. URL
 | 
																													
																						| 30 | Zhou Shaowei ,  Lin Mei ,  Zhuang Zechao , et al.  Biosynthetic graphene enhanced extracellular electron transfer for high performance anode in microbial fuel cell[J]. Chemosphere, 2019, 232, 396- 402. doi: 10.1016/j.chemosphere.2019.05.191
 | 
																													
																						| 31 | Yi Yue ,  Xie Beizhen ,  Zhao Ting , et al.  Effect of control mode on the sensitivity of a microbial fuel cell biosensor with Shewanella loihica PV-4 and the underlying bioelectrochemical mechanism[J]. Bioelectrochemistry, 2019, 128, 109- 117. doi: 10.1016/j.bioelechem.2019.04.001
 | 
																													
																						| 32 | Treesubsuntorn C ,  Chaiworn W ,  Surareungchai W , et al.  Increasing of electricity production from Echinodosus cordifolius-microbial fuel cell by inoculating Bacillus thuringiensis[J]. Science of the Total Environment, 2019, 686, 538- 545. doi: 10.1016/j.scitotenv.2019.06.063
 | 
																													
																						| 33 | 张霞, 肖莹, 周巧红.  微生物燃料电池中产电微生物的研究进展[J]. 生物技术通报, 2017, 33 (10): 64- 73. URL
 | 
																													
																						| 34 | Jiang Xiuyun ,  Burger B ,  Gajdos F , et al.  Kinetics of trifurcated electron flow in the decaheme bacterial proteins MtrC and MtrF[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116 (9): 3425- 3430. doi: 10.1073/pnas.1818003116
 | 
																													
																						| 35 | Wu Xian ,  Zou Long ,  Huang Yunhong .  Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells[J]. Enzyme and Microbial Technology, 2018, 115, 23- 28. doi: 10.1016/j.enzmictec.2018.04.005
 | 
																													
																						| 36 | Hou Bin ,  Lu Jing ,  Wang Haifang .  Performance of microbial fuel cells based on the operational parameters of biocathode during simultaneous Congo red decolorization and electricity generation[J]. Bioelectrochemistry, 2019, 128, 291- 297. doi: 10.1016/j.bioelechem.2019.04.019
 | 
																													
																						| 37 | Neethu B ,  Bhowmick G D ,  Ghangrekar M M .  A novel proton exchange membrane developed from clay and activated carbon derived from coconut shell for application in microbial fuel cell[J]. Biochemical Engineering Journal, 2019, 148, 170- 177. doi: 10.1016/j.bej.2019.05.011
 | 
																													
																						| 38 | Zhu Xi ,  Shen Chunhui ,  Gao Shanjun .  High-temperature proton exchange membrane with dual proton transfer channels by incorporating phosphonic acid functionalized siloxane into poly(2, 6-dimethyl-1, 4-phenyleneoxide)(PPO)[J]. Solid State Ionics, 2019, 337, 193- 204. doi: 10.1016/j.ssi.2019.04.027
 | 
																													
																						| 39 | 孟洪, 彭昌盛, 卢寿慈.  离子交换膜的选择透过性机理[J]. 北京科技大学学报, 2002, 24 (6): 656- 660. doi: 10.3321/j.issn:1001-053X.2002.06.019
 | 
																													
																						| 40 | Koók L ,  Quéméner E D-L ,  Bakonyi P , et al.  Behavior of two-chamber microbial electrochemical systems started-up with different ionexchange membrane separators[J]. Bioresource Technology, 2019, 278, 279- 286. doi: 10.1016/j.biortech.2019.01.097
 |