| 1 | 侯瑞琴, 刘铮, 张统.  航天发射场推进剂环境污染治理技术研究[J]. 导弹与航天运载技术, 2011, (1): 54- 57. URL
 | 
																													
																						| 2 | Modell M. Processing methods for the oxidation of organics in supercritical water: US, 4338199[P]. 1982-07-06. | 
																													
																						| 3 | Yi Lei ,  Guo Liejin ,  Jin Hui , et al.  Gasification of unsymmetrical dimethylhydrazine in supercritical water:Reaction pathway and kinetics[J]. International Journal of Hydrogen Energy, 2018, 43 (18): 8644- 8654. doi: 10.1016/j.ijhydene.2018.03.092
 | 
																													
																						| 4 | Segond N ,  Matsumura Y ,  Yamamoto K .  Determination of ammonia oxidation rate in suband supercritical water[J]. Industrial & Engineering Chemistry Research, 2002, 41 (24): 6020- 6027. URL
 | 
																													
																						| 5 | Al-Duri B ,  Pinto L ,  Ashraf-Ball N H , et al.  Thermal abatement of nitrogen-containing hydrocarbons by non-catalytic supercritical water oxidation(SCWO)[J]. Journal of Materials Science, 2008, 43 (4): 1421- 1428. doi: 10.1007/s10853-007-2285-3
 | 
																													
																						| 6 | Loppinet-Serani D A ,  Aymonier C ,  Cansell F .  Supercritical water for environmental technologies[J]. Journal of Chemical Technology & Biotechnology, 2010, 85 (5): 583- 589. URL
 | 
																													
																						| 7 | Koo M ,  Lee W K ,  Lee C H .  New reactor system for supercritical water oxidation and its application on phenol destruction[J]. Chemical Engineering Science, 1997, 52 (7): 1201- 1214. doi: 10.1016/S0009-2509(96)00477-0
 | 
																													
																						| 8 | Liu Xiangwen ,  Zhou Kebin ,  Wang Le , et al.  Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods[J]. Journal of the American Chemical Society, 2009, 131 (9): 3140- 3141. doi: 10.1021/ja808433d
 | 
																													
																						| 9 | Campbell C T .  Oxygen vacancies and catalysis on ceria surfaces[J]. Science, 2005, 309 (5735): 713- 714. doi: 10.1126/science.1113955
 | 
																													
																						| 10 | Sun Congting ,  Xue Dongfeng .  Size-dependent oxygen storage ability of nano-sized ceria[J]. Physical Chemistry Chemical Physics, 2013, 15 (34): 14414. doi: 10.1039/c3cp51959g
 | 
																													
																						| 11 | Hosseinpour N ,  Mortazavi Y ,  Bahramian A , et al.  Enhanced pyrolysis and oxidation of asphaltenes adsorbed onto transition metal oxides nanoparticles towards advanced in-situ combustion EOR processes by nanotechnology[J]. Applied Catalysis A General, 2014, 477 (2): 159- 171. URL
 | 
																													
																						| 12 | 廖晓斌, 郭玉芳, 叶代启.  不同金属氧化物对等离子体降解甲苯的作用研究[J]. 环境科学学报, 2010, 30 (9): 1824- 1832. URL
 | 
																													
																						| 13 | Li Lixiong ,  Chen Peishi ,  Gloyna E F .  Generalized kinetic model for wet oxidation of organic compounds[J]. AIChE Journal, 1991, 37 (11): 1687- 1697. doi: 10.1002/aic.690371112
 | 
																													
																						| 14 | Ding Zhongyi ,  Frisch M A ,  Li Lixong , et al.  Catalytic oxidation in supercritical water[J]. Industrial & Engineering Chemistry Research, 1996, 35 (10): 3257- 3279. URL
 | 
																													
																						| 15 | Ding Zhongyi ,  Li Lixong ,  Wade D , et al.  Supercritical water oxidation of NH3 over a MnO2/CeO2 catalyst[J]. Industrial & Engineering Chemistry Research, 1998, 37 (5): 1707- 1716. URL
 | 
																													
																						| 16 | Killilea W R ,  Swallow K C ,  Hong G T .  The fate of nitrogen in supercritical water oxidation[J]. The Journal of Supercritical Fluids, 1992, 5 (1): 72- 78. doi: 10.1016/0896-8446(92)90044-K
 | 
																													
																						| 17 | 葛红光.超临界水氧化高浓度含氮有机废水研究[D].西安:西安建筑科技大学, 2004. URL
 |