1 |
YANG Zekun, YANG Haitao, LIU Yong,et al. Heterogeneous catalytic ozonation for water treatment:Preparation and application of catalyst[J]. Ozone:Science & Engineering, 2022:1-27. doi: 10.1080/01919512.2022.2050183
|
2 |
NARAYANAN J, KUMAR B M, JISHNUL M. An assessment on the effect of titanium dioxide & iron oxide nano-particles in industrial waste water decontamination[C]//IOP Conference Series:Materials Science and Engineering. IOP Publishing, 2021, 1114:012076. doi: 10.1088/1757-899x/1114/1/012076
|
3 |
REKHATE C V, SRIVASTAVA J K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater:A review[J]. Chemical Engineering Journal Advances, 2020, 3:100031. doi: 10.1016/j.ceja.2020.100031
|
4 |
NAWROCKI J, KASPRZYK-HORDERN B. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B:Environmental, 2010, 99(1/2):27-42. doi: 10.1016/j.apcatb.2010.06.033
|
5 |
李敏,付丽亚,谭煜,等 .臭氧催化氧化在工业废水处理中的应用进展[J].工业水处理,2022,42(1):56-65.
|
|
LI Min, FU Liya, TAN Yu,et al .Application progress of catalytic ozonation in industrial effluents treatment[J].Industrial Water Treatment,2022,42(1):56-65.
|
6 |
WANG Jianlong, CHEN Hai. Catalytic ozonation for water and wastewater treatment:Recent advances and perspective[J]. The Science of the Total Environment, 2020, 704:135249. doi: 10.1016/j.scitotenv.2019.135249
|
7 |
KHODAKARAMI M, BAGHERI M. Recent advances in synthesis and application of polymer nanocomposites for water and wastewater treatment[J]. Journal of Cleaner Production, 2021, 296:126404. doi: 10.1016/j.jclepro.2021.126404
|
8 |
WANG Bing, ZHANG Huan, WANG Feifei,et al. Application of heterogeneous catalytic ozonation for refractory organics in wastewater[J]. Catalysts, 2019, 9(3):241. doi: 10.3390/catal9030241
|
9 |
GHUGE S P, SAROHA A K. Catalytic ozonation for the treatment of synthetic and industrial effluents-Application of mesoporous materials:A review[J]. Journal of Environmental Management, 2018, 211:83-102. doi: 10.1016/j.jenvman.2018.01.052
|
10 |
REKHATE C V, SRIVASTAVA J K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater:A review[J]. Chemical Engineering Journal Advances, 2020, 3:100031. doi: 10.1016/j.ceja.2020.100031
|
11 |
WANG Yujue, YU Gang. Challenges and pitfalls in the investigation of the catalytic ozonation mechanism:A critical review[J]. Journal of Hazardous Materials, 2022, 436:129157. doi: 10.1016/j.jhazmat.2022.129157
|
12 |
WAN Zhong, HU Jun, WANG Jianlong. Removal of sulfamethazine antibiotics using CeFe-graphene nanocomposite as catalyst by Fenton-like process[J]. Journal of Environmental Management, 2016, 182:284-291. doi: 10.1016/j.jenvman.2016.07.088
|
13 |
WANG Zimeng, MA Hui, ZHANG Chen,et al. Enhanced catalytic ozonation treatment of dibutyl phthalate enabled by porous magnetic Ag-doped ferrospinel MnFe 2O 4 materials:Performance and mechanism[J]. Chemical Engineering Journal, 2018, 354:42-52. doi: 10.1016/j.cej.2018.07.177
|
14 |
BAI Z Y, YANG Q, WANG J L. Fe 3O 4/multi-walled carbon nanotubes as an efficient catalyst for catalytic ozonation of p-hydroxybenzoic acid[J]. International Journal of Environmental Science and Technology, 2016, 13(2):483-492. doi: 10.1007/s13762-015-0881-3
|
15 |
JOTHINATHAN L, CAI Q Q, ONG S L,et al. Fe-Mn doped powdered activated carbon pellet as ozone catalyst for cost-effective phenolic wastewater treatment:Mechanism studies and phenol by-products elimination[J]. Journal of Hazardous Materials, 2022, 424:127483. doi: 10.1016/j.jhazmat.2021.127483
|
16 |
李振邦,张欢,王全勇,等 .多元负载型催化剂的制备及臭氧催化氧化性能[J].工业水处理,2022,42(1):148-153.
|
|
LI Zhenbang, ZHANG Huan, WANG Quanyong,et al .Preparation and ozonation performance of multicomponent supported catalysts[J].Industrial Water Treatment,2022,42(1):148-153.
|
17 |
SHIAN S, SANDHAGE K H. Hexagonal and cubic TiOF 2 [J]. Journal of Applied Crystallography, 2010, 43(4):757-761. doi: 10.1107/s0021889810016730
|
18 |
HOU Chentao, LIU Wenli, ZHU Jiaming. Synthesis of NaOH -Modified TiOF 2 and its enhanced visible light photocatalytic performance on RhB[J]. Catalysts, 2017, 7:243. doi: 10.3390/catal7080243
|
19 |
ILANGO P R, HUANG Hongjiao, LI Linlin,et al. Facile synthesis of self-organized single crystalline TiOF 2 nanotubes for photocatalytic hydrogen evolution[J]. Solid State Sciences, 2021, 117:106627. doi: 10.1016/j.solidstatesciences.2021.106627
|
20 |
LI Feng, FU Zhengping, LU Yalin. Synthesis of TiOF2 ball-flowers and the phase transitions to TiO2 [J]. Advanced Materials Research,2013,634/635/636/637/638:2297-2300.
|
21 |
LIU Yanfei, MA Zhen. TiOF 2/g-C 3N 4 composite for visible-light driven photocatalysis[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 618:126471. doi: 10.1016/j.colsurfa.2021.126471
|
22 |
SAFARI G H, HOSEINI M, SEYEDSALEHI M,et al. Photocatalytic degradation of tetracycline using nanosized titanium dioxide in aqueous solution[J]. International Journal of Environmental Science and Technology, 2015, 12(2):603-616. doi: 10.1007/s13762-014-0706-9
|
23 |
WANG Penghua, YAP P S, LIM T T. C-N-S tridoped TiO 2 for photocatalytic degradation of tetracycline under visible-light irradiation[J]. Applied Catalysis A:General, 2011, 399(1/2):252-261. doi: 10.1016/j.apcata.2011.04.008
|
24 |
JIA Yuefa, LIU Jia,CHA S,et al. Magnetically separable Au-TiO 2/nanocube ZnFe 2O 4 composite for chlortetracycline removal in wastewater under visible light[J]. Journal of Industrial and Engineering Chemistry, 2017, 47:303-314. doi: 10.1016/j.jiec.2016.12.001
|
25 |
SURIYE K, PRASERTHDAM P, JONGSOMJIT B. Control of Ti 3+surface defect on TiO 2 nanocrystal using various calcination atmospheres as the first step for surface defect creation and its application in photocatalysis[J]. Applied Surface Science, 2007, 253(8):3849-3855. doi: 10.1016/j.apsusc.2006.08.007
|
26 |
WANG Xiaoping, YU Yun, HU Xingfang,et al. Hydrophilicity of TiO 2 films prepared by liquid phase deposition[J]. Thin Solid Films, 2000, 371(1/2):148-152. doi: 10.1016/s0040-6090(00)00995-0
|
27 |
LI F B, LI X Z, HOU M F,et al. Enhanced photocatalytic activity of Ce 3+-TiO 2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control[J]. Applied Catalysis A:General, 2005, 285(1/2):181-189. doi: 10.1016/j.apcata.2005.02.025
|
28 |
HE Zhiqiao, CAI Qiaolan, HONG Fangyue,et al. Effective enhancement of the degradation of oxalic acid by catalytic ozonation with TiO 2 by exposure of{001}facets and surface fluorination[J]. Industrial & Engineering Chemistry Research, 2012, 51(16):5662-5668. doi: 10.1021/ie202357d
|
29 |
XIANG Quanjun, LV Kangle, YU Jiaguo. Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO 2 nanosheets with dominant(001) facets for the photocatalytic degradation of acetone in air[J]. Applied Catalysis B:Environmental, 2010, 96(3/4):557-564. doi: 10.1016/j.apcatb.2010.03.020
|
30 |
LIU Haimei, YANG Wensheng, MA Ying,et al. Synthesis and characterization of titania prepared by using a photoassisted Sol-gel method[J]. Langmuir, 2003, 19(7):3001-3005. doi: 10.1021/la026600o
|
31 |
HENGERER R, BOLLIGER B, ERBUDAK M,et al. Structure and stability of the anatase TiO 2(101) and(001) surfaces[J]. Surface Science, 2000, 460(1/2/3):162-169. doi: 10.1016/s0039-6028(00)00527-6
|
32 |
GUILLEMOT F, PORTÉ M C, LABRUGÈRE C,et al. Ti 4+ to Ti 3+ conversion of TiO 2 uppermost layer by low-temperature vacuum annealing:Interest for titanium biomedical applications[J]. Journal of Colloid and Interface Science, 2002, 255(1):75-78. doi: 10.1006/jcis.2002.8623
|
33 |
FANG Wenqi, ZHOU Jizhi, LIU Jian,et al. Hierarchical structures of single-crystalline anatase TiO 2 nanosheets dominated by{001}facets[J]. Chemistry(Weinheim an Der Bergstrasse,Germany), 2011, 17(5):1423-1427. doi: 10.1002/chem.201002582
|
34 |
JUNG J M, WANG Mingsong, KIM E J,et al. Photocatalytic properties of Au/TiO 2 thin films prepared by RF magnetron co-sputtering[J]. Vacuum, 2008, 82(8):827-832. doi: 10.1016/j.vacuum.2007.11.011
|
35 |
LI Di, OHASHI N, HISHITA S,et al. Origin of visible-light-driven photocatalysis:A comparative study on N/F-doped and N-F-codoped TiO 2 powders by means of experimental characterizations and theoretical calculations[J]. Journal of Solid State Chemistry, 2005, 178(11):3293-3302. doi: 10.1016/j.jssc.2005.08.008
|
36 |
YU Bo, ZHANG Lianhong, WU Hongbo,et al. Plasma-treated F modified TiO 2 impact to enhance the photocatalytic performance of TiO 2 [J]. Chemical Physics Letters, 2022, 801:139710. doi: 10.1016/j.cplett.2022.139710
|
37 |
BUSTILLO F, ROMÁN E, DE SEGOVIA J. Adsorption and thermal desorption of H 2O on TiO 2(001) at 250 K[J]. Vacuum, 1989, 39(7/8):659-661. doi: 10.1016/0042-207x(89)90010-9
|
38 |
|
|
KONG Tao, REN Nuo, CHEN Chunmao,et al .Research progress of catalytic ozonation of organic contaminants by poly-metallic oxides[J]. Industrial Water Treatment, 2021, 41(7):1-18. doi: 10.19965/j.cnki.iwt.2021-0005
|
39 |
LEGUBE B, LEITNER N K V. Catalytic ozonation:A promising advanced oxidation technology for water treatment[J]. Catalysis Today, 1999, 53(1):61-72. doi: 10.1016/s0920-5861(99)00103-0
|