| 1 | 张须媚, 王霜, 高娟娟, 等.  电容去离子技术在水处理中的应用[J]. 水处理技术, 2018, (9): 16- 21. URL
 | 
																													
																						| 2 | 尹广军, 陈福明.  电容去离子研究进展[J]. 水处理技术, 2003, (2): 63- 66. doi: 10.3969/j.issn.1000-3770.2003.02.001
 | 
																													
																						| 3 | Blair J W ,  Murphy G W .  Electrochemical demineralization of water with porous electrodes of large surface area[M]. Washington: American Chemical Society, 1960: 206- 223. | 
																													
																						| 4 | Arnold B B ,  Murphy G W .  Studies on the electrochemistry of carbon and chemically modified carbon surfaces[J]. The Journal of Physical Chemistry, 1961, 65 (1): 135- 138. doi: 10.1021/j100819a038
 | 
																													
																						| 5 | Murphy G W ,  Caudle D D .  Mathematical theory of electrochemical demineralization in flowing systems[J]. Electrochimica Acta, 1967, 12 (12): 1655- 1664. doi: 10.1016/0013-4686(67)80079-3
 | 
																													
																						| 6 | Reid G W ,  Townsend F M ,  Stevens A M .  Filed operation of a 20 gallons per day pilot plant unit for electrochemical desalination of brackish water[M]. Washington: U. S. Department of the Interior, 1968: 10- 27. | 
																													
																						| 7 | Johnson A M ,  Newman J .  Desalting by means of porous carbon electrodes[J]. Journal of the Electrochemical Society, 1971, 118 (3): 510- 517. doi: 10.1149/1.2408094
 | 
																													
																						| 8 | Farmer J C ,  Fix D V ,  Mack G V , et al.  Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes[J]. Journal of the Electrochemical Society, 1996, 143 (1): 159- 169. doi: 10.1149/1.1836402
 | 
																													
																						| 9 | Farmer J C ,  Bahowick S M ,  Harrar J E .  Elecrosorption of chromium ions on carbon aerogel electrodes as a means of remediating ground water[J]. Energy & Fuels, 1997, 11 (2): 337- 347. | 
																													
																						| 10 | Dai Kai ,  Shi Liyi ,  Fang Jianhui .  NaCl adsorption in multi-walled carbon nanotubes[J]. Materials Letters, 2005, 59 (16): 1989- 1992. doi: 10.1016/j.matlet.2005.01.042
 | 
																													
																						| 11 | Zhang Dengsong ,  Shi Liyi ,  Fang Jianhui , et al.  Preparation and desalination performance of multiwall carbon nanotubes[J]. Materials Chemistry & Physics, 2006, 97 (2/3): 415- 419. URL
 | 
																													
																						| 12 | Zhai Yunpu ,  Dou Yuqian ,  Zhao Dongyuan , et al.  Carbon materials for chemical capacitive energy storage[J]. Advanced Materials, 2011, 23 (42): 4828- 4850. doi: 10.1002/adma.201100984
 | 
																													
																						| 13 | Poradaab S ,  Zhao R ,  van der Wal A , et al.  Review on the science and technology of water desalination by capacitive deionization[J]. Progress in Materials Science, 2013, 58 (8): 1388- 1442. doi: 10.1016/j.pmatsci.2013.03.005
 | 
																													
																						| 14 | Huang Zhenghong ,  Yang Zhiyu ,  Kang Feiyu , et al.  Carbon electrodes for capacitive deionization[J]. Journal of Materials Chemistry A, 2017, 5 (2): 470- 496. doi: 10.1039/C6TA06733F
 | 
																													
																						| 15 | Zhao R ,  Biesheuvel P M ,  Miedema H , et al.  Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization[J]. The Journal of Physical Chemistry Letters, 2010, 1 (1): 205- 210. doi: 10.1021/jz900154h
 | 
																													
																						| 16 | Li Haibo ,  Lu Ting ,  Pan Likun , et al.  Electrosorption behavior of graphene in NaCl solutions[J]. Journal of Materials Chemistry, 2009, 19 (37): 6773. doi: 10.1039/b907703k
 | 
																													
																						| 17 | Huang Wei ,  Zhang Yimin ,  Bao Shenxu , et al.  Desalination by capacitive deionization process using nitric acid-modified activated carbon as the electrodes[J]. Desalination, 2014, 340, 67- 72. doi: 10.1016/j.desal.2014.02.012
 | 
																													
																						| 18 | Niu Rui ,  Li Haibo ,  Ma Yulong , et al.  Insight into the improved capacitive deionization performance of activated carbon treated by sulfuric acid[J]. Electrochimica Acta, 2015, 176, 755- 762. doi: 10.1016/j.electacta.2015.07.012
 | 
																													
																						| 19 | Yeh C L ,  Hsi H C ,  Li K C , et al.  Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio[J]. Desalination, 2015, 367, 60- 68. doi: 10.1016/j.desal.2015.03.035
 | 
																													
																						| 20 | Li Yang ,  Qi Junwen ,  Li Jiansheng , et al.  Nitrogen-doped hollow mesoporous carbon spheres for efficient water desalination by capacitive deionization[J]. ACS Sustainable Chemistry & Engineering, 2017, 5, 6635- 6644. URL
 | 
																													
																						| 21 | 张德懿, 雷龙艳, 尚永花.  氮掺杂对碳材料性能的影响研究进展[J]. 化工进展, 2016, 35 (3): 831- 836. URL
 | 
																													
																						| 22 | Paraknowitsch J P ,  Thomas A ,  Antonietti M .  A detailed view on the polycondensation of ionic liquid monomers towards nitrogen doped carbon materials[J]. Journal of Materials Chemistry, 2010, 20 (32): 6746- 6758. doi: 10.1039/c0jm00869a
 | 
																													
																						| 23 | Liu Yong ,  Chen Taiqiang ,  Lu Ting , et al.  Nitrogen-doped porous carbon spheres for highly efficient capacitive deionization[J]. Electrochimica Acta, 2015, 158 (10): 403- 409. URL
 | 
																													
																						| 24 | Lu Mingming ,  Cao Wenqiang ,  Shi Honglong , et al.  Multi-wall carbon nanotubes decorated with ZnO nanocrystals: mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature[J]. Journal of Materials Chemistry, 2014, 2, 10540- 10547. doi: 10.1039/c4ta01715c
 | 
																													
																						| 25 | 李丹, 刘玉荣, 林保平, 等.  超级电容器用石墨烯/金属氧化物复合材料[J]. 化学进展, 2015, (4): 94- 105. URL
 | 
																													
																						| 26 | Myint M T Z ,  Al-Harthi S H ,  Dutta J .  Brackish water desalination by capacitive deionization using zinc oxide micro/nanostructures grafted on activated carbon cloth electrodes[J]. Desalination, 2014, 344, 236- 242. doi: 10.1016/j.desal.2014.03.037
 | 
																													
																						| 27 | Dreyer D R ,  Park S ,  Bielawski C W , et al.  The chemistry of graphene oxide[J]. Chemical Society Reviews, 2009, 39 (1): 228- 240. URL
 | 
																													
																						| 28 | Li Haibo ,  Leong Zhiyi ,  Shi Wenhui , et al.  Hydrothermally synthesized graphene and Fe3O4 nanocomposites for high performance capacitive deionization[J]. RSC Advances, 2016, 6, 11967- 11972. doi: 10.1039/C5RA23151E
 | 
																													
																						| 29 | Kim C ,  Lee J ,  Kim S , et al.  TiO2 sol-gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization[J]. Desalination, 2014, 342, 70- 74. doi: 10.1016/j.desal.2013.07.016
 | 
																													
																						| 30 | Lee J B ,  Park K K ,  Eum H M , et al.  Desalination of a thermal power plant wastewater by membrane capacitive deionization[J]. Desalination, 2006, 196 (1/2/3): 125- 134. URL
 | 
																													
																						| 31 | Kim Y J ,  Choi J H .  Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer[J]. Water Research, 2010, 44 (3): 990- 996. doi: 10.1016/j.watres.2009.10.017
 | 
																													
																						| 32 | Biesheuvel P M ,  Zhao R ,  Porada S , et al.  Theory of membrane capacitive deionization including the effect of the electrode pore space[J]. Journal of Colloid and Interface Science, 2011, 360 (1): 239- 248. doi: 10.1016/j.jcis.2011.04.049
 | 
																													
																						| 33 | Zhao Yajing ,  Wang Yue ,  Wang Ruguo , et al.  Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes[J]. Desalination, 2013, 324, 127- 133. doi: 10.1016/j.desal.2013.06.009
 | 
																													
																						| 34 | Li Haibo ,  Zou Linda .  Ion-exchange membrane capacitive deioni zation: a new strategy for brackish water desalination[J]. Desalination, 2011, 275 (1/2/3): 62- 66. | 
																													
																						| 35 | 刘丹阳, 唐浩, 黄宽, 等.  膜电容去离子和微生物电容脱盐电池研究进展[J]. 水处理技术, 2015, 287 (12): 26- 30. URL
 | 
																													
																						| 36 | Jeon S I ,  Park H R ,  Yeo J G , et al.  Desalination via a new membrane capacitive deionization process utilizing flow-electrodes[J]. Energy & Environmental Science, 2013, 6 (5): 1471- 1475. URL
 | 
																													
																						| 37 | Xu Xingtao ,  Wang Miao ,  Liu Yong , et al.  Ultrahigh desalinization performance of asymmetric flow-electrode capacitive deionization device with an improved operation voltage of 1.8 V[J]. Acs Sustainable Chemistry & Engineering, 2017, 5 (1): 189- 195. URL
 | 
																													
																						| 38 | Hatzell K B ,  Iwama E ,  Ferris A , et al.  Capacitive deionization concept based on suspension electrodes without ion exchange membranes[J]. Electrochemistry Communications, 2014, 43, 18- 21. doi: 10.1016/j.elecom.2014.03.003
 | 
																													
																						| 39 | Lee J ,  Kim S ,  Kim C , et al.  Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques[J]. Energy & Environmental Science, 2014, 7 (11): 3683- 3689. URL
 | 
																													
																						| 40 | Kim T ,  Gorski C A ,  Logan B E .  Low energy desalination using battery electrode deionization[J]. Environmental Science & Technology Letters, 2017, 4 (10): 444- 449. URL
 | 
																													
																						| 41 | Guo Lu ,  Mo Runwei ,  Shi Wenhui , et al.  A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism[J]. Nanoscale, 2017, 9 (35): 13305- 13312. doi: 10.1039/C7NR03579A
 | 
																													
																						| 42 | Yu Fei ,  Wang Lei ,  Wang Ying , et al.  Faradaic reactions in capacitive deionization for desalination and ion separation[J]. Journal of Materials Chemistry A, 2019, 7, 15999- 16027. doi: 10.1039/C9TA01264H
 |