1 |
JIN Xindie, ZHOU Xiaoqin, SUN Peng,et al. Photocatalytic degradation of norfloxacin using N-doped TiO 2:Optimization,mechanism,identification of intermediates and toxicity evaluation[J]. Chemosphere, 2019, 237:124433. doi: 10.1016/j.chemosphere.2019.124433
|
2 |
VAN DOORSLAER X, DEWULF J, VAN LANGENHOVE H,et al. Fluoroquinolone antibiotics:An emerging class of environmental micropollutants[J]. Science of the Total Environment, 2014, 500/501:250-269. doi: 10.1016/j.scitotenv.2014.08.075
|
3 |
DANNER M C, ROBERTSON A, BEHRENDS V,et al. Antibiotic pollution in surface fresh waters:Occurrence and effects[J]. Science of the Total Environment, 2019, 664:793-804. doi: 10.1016/j.scitotenv.2019.01.406
|
4 |
YU Fei, LI Yong, HAN Sheng,et al. Adsorptive removal of antibiotics from aqueous solution using carbon materials[J]. Chemosphere, 2016, 153:365-385. doi: 10.1016/j.chemosphere.2016.03.083
|
5 |
PRIETO A, MÖDER M, RODIL R,et al. Degradation of the antibiotics norfloxacin and ciprofloxacin by a white-rot fungus and identification of degradation products[J]. Bioresource Technology, 2011, 102(23):10987-10995. doi: 10.1016/j.biortech.2011.08.055
|
6 |
WANG Ying, SHEN Chanchan, ZHANG Manman,et al. The electrochemical degradation of ciprofloxacin using a SnO 2-Sb/Ti anode:Influencing factors,reaction pathways and energy demand[J]. Chemical Engineering Journal, 2016, 296:79-89. doi: 10.1016/j.cej.2016.03.093
|
7 |
朱秋蓉,何世颖,赵晓蕾,等. AgCl/ZnO/GO光催化降解甲基橙的性能研究[J]. 环境科学研究,2020,33(4):969-977.
|
|
ZHU Qiurong, HE Shiying, ZHAO Xiaolei,et al. Photocatalytic degradation of methyl orange by AgCl/ZnO/GO[J]. Research of Environmental Sciences,2020,33(4):969-977.
|
8 |
WANG X, MAEDA K, THOMAS A,et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1):76-80. doi: 10.1038/nmat2317
|
9 |
GONG Han, CHU Wei. Determination and toxicity evaluation of the generated products in sulfamethoxazole degradation by UV/CoFe 2O 4/TiO 2 [J]. Journal of Hazardous Materials, 2016, 314:197-203. doi: 10.1016/j.jhazmat.2016.04.052
|
10 |
|
|
CHANG Fang, HUANG Taobo, CHEN Long,et al. Photocatalytic degradation mechanism of moxifloxacin by g-C 3N 4 under various light wavelengths[J]. Environmental Chemistry, 2020, 39(3):593-600. doi: 10.7524/j.issn.0254-6108.2019102206
|
11 |
WANG Fengliang, FENG Yiping, CHEN Ping,et al. Photocatalytic degradation of fluoroquinolone antibiotics using ordered mesoporous g-C 3N 4 under simulated sunlight irradiation:Kinetics,mechanism,and antibacterial activity elimination[J]. Applied Catalysis B:Environmental, 2018, 227:114-122. doi: 10.1016/j.apcatb.2018.01.024
|
12 |
DONG Guohui, ZHAO Kun, ZHANG Lizhi. Carbon self-doping induced high electronic conductivity and photoreactivity of g-C 3N 4 [J]. Chemical Communications, 2012, 48(49):6178-6180. doi: 10.1039/c2cc32181e
|
13 |
LI Daguang, HUANG Jiaxing, LI Ruobai,et al. Synthesis of a carbon dots modified g-C 3N 4/SnO 2 Z-scheme photocatalyst with superior photocatalytic activity for PPCPs degradation under visible light irradiation[J]. Journal of Hazardous Materials, 2021, 401:123257. doi: 10.1016/j.jhazmat.2020.123257
|
14 |
ZHANG Yuewei, LIU Jinghai, WU Guan,et al. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production[J]. Nanoscale, 2012, 4(17):5300-5303. doi: 10.1039/c2nr30948c
|
15 |
DONG Fan, WU Liwen, SUN Yanjuan,et al. Efficient synthesis of polymeric g-C 3N 4 layered materials as novel efficient visible light driven photocatalysts[J]. Journal of Materials Chemistry, 2011, 21(39):15171. doi: 10.1039/c1jm12844b
|
16 |
YAN Hongjian. Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H 2 evolution under visible light[J]. Chemical Communications, 2012, 48(28):3430-3432. doi: 10.1039/c2cc00001f
|
17 |
WANG Fengliang, CHEN Ping, FENG Yiping,et al. Facile synthesis of N-doped carbon dots/g-C 3N 4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin[J]. Applied Catalysis B:Environmental, 2017, 207:103-113. doi: 10.1016/j.apcatb.2017.02.024
|
18 |
YAN S C, LI Z S, ZOU Z G. Photodegradation performance of g-C 3N 4 fabricated by directly heating melamine[J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2009, 25(17):10397-10401. doi: 10.1021/la900923z
|
19 |
|
|
SU Yuehan, WANG Yingfei, ZHANG Qianxin,et al. The preparation of two-dimensional ultrathin g-C 3N 4 and the research of the photo-catalysis properties[J]. China Environmental Science, 2017, 37(10):3748-3757. doi: 10.3969/j.issn.1000-6923.2017.10.017
|
20 |
CHEN Yanfeng, HUANG Weixin, HE Donglin,et al. Construction of heterostructured g-C 3N 4/Ag/TiO 2 microspheres with enhanced photocatalysis performance under visible-light irradiation[J]. ACS Applied Materials & Interfaces, 2014, 6(16):14405-14414. doi: 10.1021/am503674e
|
21 |
DOU Mengmeng, WANG Jin, GAO Boru,et al. Photocatalytic difference of amoxicillin and cefotaxime under visible light by mesoporous g-C 3N 4:Mechanism,degradation pathway and DFT calculation[J]. Chemical Engineering Journal, 2020, 383:123134. doi: 10.1016/j.cej.2019.123134
|
22 |
JIANG Yan, QU Feiqiang, TIAN Lin,et al. Self-assembled g-C 3N 4 nanoarchitectures with boosted photocatalytic solar-to-hydrogen efficiency[J]. Applied Surface Science, 2019, 487:59-67. doi: 10.1016/j.apsusc.2019.05.056
|
23 |
WANG Yuxiong, RAO Lei, WANG Peifang,et al. Photocatalytic activity of N-TiO 2/O-doped N vacancy g-C 3N 4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(Ⅵ) coexistence environment[J]. Applied Catalysis B:Environmental, 2020, 262:118308. doi: 10.1016/j.apcatb.2019.118308
|
24 |
张黎明. 改性氮化碳降解水环境中四环素类抗生素的应用研究[D]. 南京:东南大学,2018.
|
|
ZHANG Liming. Application of modified nitride on the degradation of tetracyline antibiotics in water environment[D]. Nanjing:Southeast University,2018.
|
25 |
JIANG Longbo, YUAN Xingzhong, ZENG Guangming,et al. Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant[J]. Applied Catalysis B:Environmental, 2018, 221:715-725. doi: 10.1016/j.apcatb.2017.09.059
|
26 |
WU Dan, WANG Bo, WANG Wei,et al. Visible-light-driven BiOBr nanosheets for highly facet-dependent photocatalytic inactivation of Escherichia coli[J]. Journal of Materials Chemistry A, 2015, 3(29):15148-15155. doi: 10.1039/c5ta02757h
|
27 |
LIU Xiaona, JI Haodong, LI Si,et al. Graphene modified anatase/titanate nanosheets with enhanced photocatalytic activity for efficient degradation of sulfamethazine under simulated solar light[J]. Chemosphere, 2019, 233:198-206. doi: 10.1016/j.chemosphere.2019.05.229
|
28 |
王盈霏,王枫亮,黎杰华,等. 介孔氮化碳光催化降解诺氟沙星的动力学机制[J]. 中国环境科学,2018,38(4):1346-1355.
|
|
WANG Yingfei, WANG Fengliang, LI Jiehua,et al. Hotocatalytic degradation kinetics and mechanism of norfloxacin using mesoporous g-C3N4 under visible-light irradiation[J]. China Environmental Science,2018,38(4):1346-1355.
|
29 |
CHEN Meijuan, CHU W. Photocatalytic degradation and decomposition mechanism of fluoroquinolones norfloxacin over bismuth tungstate:Experiment and mathematic model[J]. Applied Catalysis B:Environmental, 2015, 168/169:175-182. doi: 10.1016/j.apcatb.2014.12.023
|
30 |
ZHUANG Yan, LUAN Jingfei. Improved photocatalytic property of peony-like InOOH for degrading norfloxacin[J]. Chemical Engineering Journal, 2020, 382:122770. doi: 10.1016/j.cej.2019.122770
|
31 |
GUO Changsheng, GAO Shengwang, Jiapei LÜ,et al. Assessing the photocatalytic transformation of norfloxacin by BiOBr/iron oxides hybrid photocatalyst:Kinetics,intermediates,and influencing factors[J]. Applied Catalysis B:Environmental, 2017, 205:68-77. doi: 10.1016/j.apcatb.2016.12.032
|
32 |
HU Xi, HU Xinjiang, PENG Qingqing,et al. Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO 2 [J]. Chemical Engineering Journal, 2020, 380:122366. doi: 10.1016/j.cej.2019.122366
|
33 |
ZHOU Yi, HE Jie, LU Jian,et al. Enhanced removal of bisphenol A by cyclodextrin in photocatalytic systems:Degradation intermediates and toxicity evaluation[J]. Chinese Chemical Letters, 2020, 31(10):2623-2626. doi: 10.1016/j.cclet.2020.02.008
|